期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electro-acupuncture at Conception and Governor vessels and transplantation of umbilical cord bloodderived mesenchymal stem cells for treating cerebral ischemia/reperfusion injury 被引量:15
1
作者 Haibo Yu Pengdian Chen +4 位作者 Zhuoxin Yang Wenshu Luo Min Pi Yonggang Wu Ling Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第1期84-91,共8页
Mesenchymal stem cell transplantation is a novel means of treating cerebral ischemia/reper- fusion, and can promote angiogenesis and neurological functional recovery. Acupuncture at Conception and Governor vessels als... Mesenchymal stem cell transplantation is a novel means of treating cerebral ischemia/reper- fusion, and can promote angiogenesis and neurological functional recovery. Acupuncture at Conception and Governor vessels also has positive effects as a treatment for cerebral ischemia/ reperfusion. Therefore, we hypothesized that electro-acupuncture at Conception and Governor vessels plus mesenchymal stem cell transplantation may have better therapeutic effects on the promotion of angiogenesis and recovery of neurological function than either treatment alone. In the present study, human umbilical cord blood-derived mesenchymal stem cells were isolated, cultured, identified and intracranially transplanted into the striatum and subcortex of rats at 24 hours following cerebral ischemia/reperfusion. Subsequently, rats were electro-acupunctured at Conception and Governor vessels at 24 hours after transplantation. Modified neurological severity scores and immunohistochemistry findings revealed that the combined interventions of electro-acupuncture and mesenchymal stem cell transplantation clearly improved neurological impairment and up-regulated vascular endothelial growth factor expression around the isch- emic focus. The combined intervention provided a better outcome than mesenchymal stem cell transplantation alone. These findings demonstrate that electro-acupuncture at Conception and Governor vessels and mesenchymal stem cell transplantation have synergetic effects on promot- ing neurological function recovery and angiogenesis in rats after cerebral ischemia/reperfusion. 展开更多
关键词 nerve regeneration acupuncture human umbilical cord blood-derived mesenchymalstem cells ELECTRO-ACUPUNCTURE cerebral ischemia/reperfusion vascular endothelial growth factor angiogenesis Conception vessel Governor vessel modified neurological severity score NSFC grant neural regeneration
下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
2
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property Schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部