Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, ...An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper.展开更多
The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit a...The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.展开更多
We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers...We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers are uncertain variables. This research was studied with the assumption that customers patronize the nearest distribution center to satisfy their full demands. Within the framework of uncertainty theory, we construct the expected value model to maximize the expected profit of the new distribution center. In order to seek for the optimal solution, this model can be transformed into its deterministic form by taking advantage of the operational law of uncertain variables. Then we can use mathematical software to obtain the optimal location. In addition, a numerical example is presented to illustrate the effectiveness of the presented model.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
Project scheduling problem is mainly to determine the schedule of allocating resources in order to balance the total cost and the completion time. This paper chiefly uses chance theory to introduce project scheduling ...Project scheduling problem is mainly to determine the schedule of allocating resources in order to balance the total cost and the completion time. This paper chiefly uses chance theory to introduce project scheduling problem with uncertain variables. First, two types of single-objective programming models with uncertain variables as uncertain chance-constrained model and uncertain maximization chance-constrained model are established to meet different management requirements, then they are extended to multi-objective programming model with uncertain variables.展开更多
This paper extends Slutsky’s classic work on consumer theory to a random horizon stochastic dynamic framework in which the consumer has an inter-temporal planning horizon with uncertainties in future incomes and life...This paper extends Slutsky’s classic work on consumer theory to a random horizon stochastic dynamic framework in which the consumer has an inter-temporal planning horizon with uncertainties in future incomes and life span. Utility maximization leading to a set of ordinary wealth-dependent demand functions is performed. A dual problem is set up to derive the wealth compensated demand functions. This represents the first time that wealth-dependent ordinary demand functions and wealth compensated demand functions are obtained under these uncertainties. The corresponding Roy’s identity relationships and a set of random horizon stochastic dynamic Slutsky equations are then derived. The extension incorporates realistic characteristics in consumer theory and advances the conventional microeconomic study on consumption to a more realistic optimal control framework.展开更多
In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programmi...In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.展开更多
Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is...Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.展开更多
Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The autho...Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The authors regard an OD estimation as a bi-level programming problem,and apply a microscopic traffic simulation model to it.However,the simulation trials can be computationally expensive if full dynamic rerouting is allowed,when employing multi-agent-based models in the estimation process.This paper proposes an efficient OD estimation method using a multi-agent-based simulator with restricted dynamic rerouting to reduce the computational load.Even though,in the case of large traffic demand,the restriction on dynamic rerouting can result in heavier congestion.The authors resolve this problem by introducing constraints of the bi-level programming problem depending on link congestion.Test results show that the accuracy of the link traffic volume reproduced with the proposed method is virtually identical to that of existing methods but that the proposed method is more computationally efficient in a wide-range or high-demand context.展开更多
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
文摘An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper.
基金the Humanities and Social Science Foundation of the Ministry of Education of China(Grant No.20YJCZH121).
文摘The urban transit fare structure and level can largely affect passengers’travel behavior and route choices.The commonly used transit fare policies in the present transit network would lead to the unbalanced transit assignment and improper transit resources distribution.In order to distribute transit passenger flow evenly and efficiently,this paper introduces a new distance-based fare pattern with Euclidean distance.A bi-level programming model is developed for determining the optimal distance-based fare pattern,with the path-based stochastic transit assignment(STA)problem with elastic demand being proposed at the lower level.The upper-level intends to address a principal-agent game between transport authorities and transit enterprises pursing maximization of social welfare and financial interest,respectively.A genetic algorithm(GA)is implemented to solve the bi-level model,which is verified by a numerical example to illustrate that the proposed nonlinear distance-based fare pattern presents a better financial performance and distribution effect than other fare structures.
文摘We employ uncertain programming to investigate the competitive logistics distribution center location problem in uncertain environment, in which the demands of customers and the setup costs of new distribution centers are uncertain variables. This research was studied with the assumption that customers patronize the nearest distribution center to satisfy their full demands. Within the framework of uncertainty theory, we construct the expected value model to maximize the expected profit of the new distribution center. In order to seek for the optimal solution, this model can be transformed into its deterministic form by taking advantage of the operational law of uncertain variables. Then we can use mathematical software to obtain the optimal location. In addition, a numerical example is presented to illustrate the effectiveness of the presented model.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
文摘Project scheduling problem is mainly to determine the schedule of allocating resources in order to balance the total cost and the completion time. This paper chiefly uses chance theory to introduce project scheduling problem with uncertain variables. First, two types of single-objective programming models with uncertain variables as uncertain chance-constrained model and uncertain maximization chance-constrained model are established to meet different management requirements, then they are extended to multi-objective programming model with uncertain variables.
文摘This paper extends Slutsky’s classic work on consumer theory to a random horizon stochastic dynamic framework in which the consumer has an inter-temporal planning horizon with uncertainties in future incomes and life span. Utility maximization leading to a set of ordinary wealth-dependent demand functions is performed. A dual problem is set up to derive the wealth compensated demand functions. This represents the first time that wealth-dependent ordinary demand functions and wealth compensated demand functions are obtained under these uncertainties. The corresponding Roy’s identity relationships and a set of random horizon stochastic dynamic Slutsky equations are then derived. The extension incorporates realistic characteristics in consumer theory and advances the conventional microeconomic study on consumption to a more realistic optimal control framework.
文摘In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.
基金supported by the National Natural Science Foundation of China(U21A20478)Zhejiang Provincial Nature Science Foundation of China(LZ21F030004)Key-Area Research and Development Program of Guangdong Province(2018B010107002)。
文摘Demand response(DR)using shared energy storage systems(ESSs)is an appealing method to save electricity bills for users under demand charge and time-of-use(TOU)price.A novel Stackelberg-game-based ESS sharing scheme is proposed and analyzed in this study.In this scheme,the interactions between selfish users and an operator are characterized as a Stackelberg game.Operator holds a large-scale ESS that is shared among users in the form of energy transactions.It sells energy to users and sets the selling price first.It maximizes its profit through optimal pricing and ESS dispatching.Users purchase some energy from operator for the reduction of their demand charges after operator's selling price is announced.This game-theoretic ESS sharing scheme is characterized and analyzed by formulating and solving a bi-level optimization model.The upper-level optimization maximizes operator's profit and the lower-level optimization minimizes users'costs.The bi-level model is transformed and linearized into a mixed-integer linear programming(MILP)model using the mathematical programming with equilibrium constraints(MPEC)method and model linearizing techniques.Case studies with actual data are carried out to explore the economic performances of the proposed ESS sharing scheme.
基金supported by JSPS KAKENHI (Grant Nos.15H01785 and 19H02377).
文摘Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The authors regard an OD estimation as a bi-level programming problem,and apply a microscopic traffic simulation model to it.However,the simulation trials can be computationally expensive if full dynamic rerouting is allowed,when employing multi-agent-based models in the estimation process.This paper proposes an efficient OD estimation method using a multi-agent-based simulator with restricted dynamic rerouting to reduce the computational load.Even though,in the case of large traffic demand,the restriction on dynamic rerouting can result in heavier congestion.The authors resolve this problem by introducing constraints of the bi-level programming problem depending on link congestion.Test results show that the accuracy of the link traffic volume reproduced with the proposed method is virtually identical to that of existing methods but that the proposed method is more computationally efficient in a wide-range or high-demand context.