Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which co...Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which contains unsufficient information.To solve this problem,a robust optimization operation method based on information gap decision theory(IGDT) is presented considering the non-probabilistic uncertainties of parameters.By the proposed method the maximum resistance to the disturbance of uncertain parameters is achieved and the optimization strategies with uncertain parameters are presented.Finally,numerical simulation is performed on the modified IEEE-14 bus system.Numerical results show the effectiveness of the proposed approach.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的...作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的空间和基于限制的空间,RFID监控场景通常被设置在一种半限制的空间内,需要新的存储和距离计算策略.此外,监控对象位置的不确定性对查询语义和处理方法提出了挑战.提出了半限制空间的概念,并且分析了基于RFID的半限制空间的模型.基于半限制空间,在给定一个动态查询点的基础上,提出了3种模型和算法以有效地估计可能性k-近邻的查询结果,并采用一些特殊的索引技术加快查询的速度.实验对提出算法的效率和准确性进行了评估,表明了相关方法的有效性.展开更多
基金National Natural Science Foundation of China(No.61533010)Science and Technology Commission of Shanghai Municipality,China(No.14ZR1415300)
文摘Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which contains unsufficient information.To solve this problem,a robust optimization operation method based on information gap decision theory(IGDT) is presented considering the non-probabilistic uncertainties of parameters.By the proposed method the maximum resistance to the disturbance of uncertain parameters is achieved and the optimization strategies with uncertain parameters are presented.Finally,numerical simulation is performed on the modified IEEE-14 bus system.Numerical results show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
文摘作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的空间和基于限制的空间,RFID监控场景通常被设置在一种半限制的空间内,需要新的存储和距离计算策略.此外,监控对象位置的不确定性对查询语义和处理方法提出了挑战.提出了半限制空间的概念,并且分析了基于RFID的半限制空间的模型.基于半限制空间,在给定一个动态查询点的基础上,提出了3种模型和算法以有效地估计可能性k-近邻的查询结果,并采用一些特殊的索引技术加快查询的速度.实验对提出算法的效率和准确性进行了评估,表明了相关方法的有效性.