A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
Semi entropy is a measure to characterize the indeterminacy of the uncertain random variable considering the values of the uncertain random variable which are lower than the mean.As important roles of semi entropy in ...Semi entropy is a measure to characterize the indeterminacy of the uncertain random variable considering the values of the uncertain random variable which are lower than the mean.As important roles of semi entropy in finance,this paper presents the concept of semi entropy for uncertain random variables.In order to compute semi entropy for uncertain random variables,Monte-Carlo approach is provided.As an application of semi entropy,portfolio selection problems are optimized based on mean-semi entropy mode.展开更多
To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was d...To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was developed to provide foundation for obtaining sliding mode by equivalent control,and switching functions with integral dynamic compensators and variable structure controllers were designed respectively under two circumstances that the system without uncertain part was stabilized by delay-dependent and delay-independent linear state feedback. The design guarantees the asymptotical stablity of switching manifolds,and the variable structure controllers can force solution trajectory of the system to arrive at the switching manifolds in limited time. A numerical example is given to demonstrate the feasibility and simplicity of the design method.展开更多
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic ...An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.展开更多
An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be ...An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.展开更多
Random variables and uncertain variables are respectively used to model randomness and uncertainty. While randomness and uncertainty always coexist in a same complex system. As an evolution of random variables and unc...Random variables and uncertain variables are respectively used to model randomness and uncertainty. While randomness and uncertainty always coexist in a same complex system. As an evolution of random variables and uncertain variables, uncertain random variable is introduced as a tool to deal with complex phenomena including randomness and uncertainty simultaneously. For uncertain random variables, a basic and important topic is to discuss the convergence of its sequence.Specifically, this paper focuses on studying the convergence in distribution for a sequence of uncertain random sequences with different chance distributions where random variables are not independent.And the result of this paper is a generalization of the existing literature. Relations among convergence theorems are studied. Furthermore, the theorems are explained by several examples.展开更多
The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts.Existing methods are either compu...The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts.Existing methods are either computationally unaffordable or with limited application scope.Accordingly,a new technique for capturing the minimal and maximal point vectors instead of the extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables is proposed.The fuzziness propagation in the random reliability,which is the focus of the present study,is performed by the proposed method,in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation.First-Order,Second-Moment(FOSM)method which can be replaced by its counterparts is utilized to calculate the structural random reliability.Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applications introduced in the paper.展开更多
The classical probabilistic reliability theory and fuzzy reliability theory cannot directly measure the uncertainty of structural reliability with uncertain variables, i.e., subjective random and fuzzy variables. In o...The classical probabilistic reliability theory and fuzzy reliability theory cannot directly measure the uncertainty of structural reliability with uncertain variables, i.e., subjective random and fuzzy variables. In order to simultaneously satisfy the duality of randomness and subadditivity of fuzziness in the reliability problem, a new quantification method for the reliability of structures is presented based on uncertainty theory, and an uncertainty-theory-based perspective of classical Cornell reliability index is explored. In this paper, by introducing the uncertainty theory, we adopt the uncertain measure to quantify the reliability of structures for the subjective probability or fuzzy variables, instead of probabilistic and possibilistic measures. We utilize uncertain variables to uniformly represent the subjective random and fuzzy parameters, based on which we derive solutions to analyze the uncertainty reliability of structures with uncertainty distributions. Moreover, we propose the Cornell uncertainty reliability index based on the uncertain expected value and variance.Experimental results on three numerical applications demonstrate the validity of the proposed method.展开更多
The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuiti...The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuitionistic uncertain linguistic variables and the concept of the expected value and accuracy function,some new dependent aggregation operators with intuitionistic uncertain linguistic information including the dependent intuitionistic uncertain linguistic ordered weighted average(DIULOWA)operator,the dependent intuitionistic uncertain linguistic ordered weighted geometric(DIULOWG)operator,the generalized dependent intuitionistic uncertain linguistic ordered weighted aggregation(GDIULOWA)operator and so on are developed,in which the associated weights only depend on the aggregated arguments.Also,we study some desirable properties of the aggregation operators.Moreover,the approach of multiple attribute group decision making with intuitionistic uncertain linguistic information based on the developed operators is proposed.Finally,an illustrative numerical example is given to show the practicality and effectiveness of the proposed approaches.展开更多
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
文摘Semi entropy is a measure to characterize the indeterminacy of the uncertain random variable considering the values of the uncertain random variable which are lower than the mean.As important roles of semi entropy in finance,this paper presents the concept of semi entropy for uncertain random variables.In order to compute semi entropy for uncertain random variables,Monte-Carlo approach is provided.As an application of semi entropy,portfolio selection problems are optimized based on mean-semi entropy mode.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60574005)Natural Science Foundation of Qingdao(Grant No.04-2-Jz-98)
文摘To study the approximation theory of real sliding mode and the design of variable structure controller for time-invariant linear uncertain time-delay singular system,the approximation theory of real sliding mode was developed to provide foundation for obtaining sliding mode by equivalent control,and switching functions with integral dynamic compensators and variable structure controllers were designed respectively under two circumstances that the system without uncertain part was stabilized by delay-dependent and delay-independent linear state feedback. The design guarantees the asymptotical stablity of switching manifolds,and the variable structure controllers can force solution trajectory of the system to arrive at the switching manifolds in limited time. A numerical example is given to demonstrate the feasibility and simplicity of the design method.
基金The National Natural Science Foundation of China(No.70671017)
文摘An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.
文摘An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.
基金the Natural Science Foundation of Hebei Province under Grant No.F2020202056Key Project of Hebei Education Department under Grant No. ZD2020125。
文摘Random variables and uncertain variables are respectively used to model randomness and uncertainty. While randomness and uncertainty always coexist in a same complex system. As an evolution of random variables and uncertain variables, uncertain random variable is introduced as a tool to deal with complex phenomena including randomness and uncertainty simultaneously. For uncertain random variables, a basic and important topic is to discuss the convergence of its sequence.Specifically, this paper focuses on studying the convergence in distribution for a sequence of uncertain random sequences with different chance distributions where random variables are not independent.And the result of this paper is a generalization of the existing literature. Relations among convergence theorems are studied. Furthermore, the theorems are explained by several examples.
基金supported by the Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)‘111’Pro-ject(Grant No.B07009)the National Natural Science Foundation of China(Grant No.90816024)
文摘The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts.Existing methods are either computationally unaffordable or with limited application scope.Accordingly,a new technique for capturing the minimal and maximal point vectors instead of the extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables is proposed.The fuzziness propagation in the random reliability,which is the focus of the present study,is performed by the proposed method,in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation.First-Order,Second-Moment(FOSM)method which can be replaced by its counterparts is utilized to calculate the structural random reliability.Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applications introduced in the paper.
基金co-supported by the National Natural Science Foundation of China (Nos. 51675026 and 71671009)the National Basic Research Program of China (No. 2013CB733002)
文摘The classical probabilistic reliability theory and fuzzy reliability theory cannot directly measure the uncertainty of structural reliability with uncertain variables, i.e., subjective random and fuzzy variables. In order to simultaneously satisfy the duality of randomness and subadditivity of fuzziness in the reliability problem, a new quantification method for the reliability of structures is presented based on uncertainty theory, and an uncertainty-theory-based perspective of classical Cornell reliability index is explored. In this paper, by introducing the uncertainty theory, we adopt the uncertain measure to quantify the reliability of structures for the subjective probability or fuzzy variables, instead of probabilistic and possibilistic measures. We utilize uncertain variables to uniformly represent the subjective random and fuzzy parameters, based on which we derive solutions to analyze the uncertainty reliability of structures with uncertainty distributions. Moreover, we propose the Cornell uncertainty reliability index based on the uncertain expected value and variance.Experimental results on three numerical applications demonstrate the validity of the proposed method.
基金Supported by the National Natural Science Foundation of China(71761027)Ningbo Natural Science Foundation(2015A610161)。
文摘The multiple attribute group decision making problem in which the input arguments take the form of intuitionistic uncertain linguistic information is studied in the paper.Based on the operational principles of intuitionistic uncertain linguistic variables and the concept of the expected value and accuracy function,some new dependent aggregation operators with intuitionistic uncertain linguistic information including the dependent intuitionistic uncertain linguistic ordered weighted average(DIULOWA)operator,the dependent intuitionistic uncertain linguistic ordered weighted geometric(DIULOWG)operator,the generalized dependent intuitionistic uncertain linguistic ordered weighted aggregation(GDIULOWA)operator and so on are developed,in which the associated weights only depend on the aggregated arguments.Also,we study some desirable properties of the aggregation operators.Moreover,the approach of multiple attribute group decision making with intuitionistic uncertain linguistic information based on the developed operators is proposed.Finally,an illustrative numerical example is given to show the practicality and effectiveness of the proposed approaches.