An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturba...An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturbation technique is employed to transform the original Helmholtz equation in a random domain into a stochastic Helmholtz equation in a fixed domain.The generalized polynomial chaos(gPC)is then used to discretize the random space;and a Fourier-Legendre method to discretize the physical space.These result in a highly efficient and accurate spectral algorithm for acoustic scattering from rough surfaces.Numerical examples are presented to illustrate the accuracy and efficiency of the present algorithm.展开更多
基金supported in part by NSF grants DMS-0243191 and DMS-0311915.
文摘An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturbation technique is employed to transform the original Helmholtz equation in a random domain into a stochastic Helmholtz equation in a fixed domain.The generalized polynomial chaos(gPC)is then used to discretize the random space;and a Fourier-Legendre method to discretize the physical space.These result in a highly efficient and accurate spectral algorithm for acoustic scattering from rough surfaces.Numerical examples are presented to illustrate the accuracy and efficiency of the present algorithm.