In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have n...In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have now been opened by igniting the neutron-free reaction of proton-boron-11 (p-^11B) using side-on block ignition. Laser pulses of several petawatt power and ps duration led to thc discovery of an anomaly of interaction, if the prepulses are cut off by a factor 108 (contrast ratio) to avoid relativistic self focusing. In this case the Bobin-Chu conditions of side-on ignition of solid fusion fuel can be applied after several improvements leading to energy gains of 10,000 similar to the Nuckolls-Wood ignition with extremely intense 5 MeV electron beams. In contrast to the impossible laser-ignition of p-^11B by the usual spherical compression, the side-on ignition is less than ten times only more difficult of DT ignition. This p-^11B fusion produces less radioactivity per gained energy than burning coal. After encouraging success with computations based on the different nuclear cross sections, next steps are focusing on stability and transport problems.展开更多
文摘In addition to the matured "Laser Inertial Fusion Energy (LIFE)" with spherical compression of deuterium-tritium (DI) for a pure fusion engine or for fusion-fission-hybrid operation, a very new scheme may have now been opened by igniting the neutron-free reaction of proton-boron-11 (p-^11B) using side-on block ignition. Laser pulses of several petawatt power and ps duration led to thc discovery of an anomaly of interaction, if the prepulses are cut off by a factor 108 (contrast ratio) to avoid relativistic self focusing. In this case the Bobin-Chu conditions of side-on ignition of solid fusion fuel can be applied after several improvements leading to energy gains of 10,000 similar to the Nuckolls-Wood ignition with extremely intense 5 MeV electron beams. In contrast to the impossible laser-ignition of p-^11B by the usual spherical compression, the side-on ignition is less than ten times only more difficult of DT ignition. This p-^11B fusion produces less radioactivity per gained energy than burning coal. After encouraging success with computations based on the different nuclear cross sections, next steps are focusing on stability and transport problems.