期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ENERGY STABLE NUMERICAL METHOD FOR THE TDGL EQUATION WITH THE RETICULAR FREE ENERGY IN HYDROGEL
1
作者 Dong Liao Hui Zhang Zhengru Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2017年第1期37-51,共15页
Here we focus on the numerical simulation of the phase separation about macromolecule microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg- Landau (TDGL) equation with the reticular ... Here we focus on the numerical simulation of the phase separation about macromolecule microsphere composite (MMC) hydrogel. The model is based on time-dependent Ginzburg- Landau (TDGL) equation with the reticular free energy. An unconditionally energy stable difference scheme is proposed based on the convex splitting of the corresponding energy functional. In the numerical experiments, we observe that simulating the whole process of the phase separation requires a considerably long time. We also notice that the total free energy changes significantly in initial stage and varies slightly in the following time. Based on these properties, we apply the adaptive time stepping strategy to improve the computational efficiency. It is found that the application of time step adaptivity can not only resolve the dynamical changes of the solution accurately but also significantly save CPU time for the long time simulation. 展开更多
关键词 TDGL equation unconditionally energy stable scheme Adaptive time-steppingmethod Phase transition.
原文传递
A High Order Adaptive Time-Stepping Strategy and Local Discontinuous Galerkin Method for the Modified Phase Field Crystal Equation 被引量:3
2
作者 Ruihan Guo Yan Xu 《Communications in Computational Physics》 SCIE 2018年第6期123-151,共29页
In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)... In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy. 展开更多
关键词 Adaptive time-stepping local discontinuous Galerkin method modified phase field crystal equation convex splitting pseudo energy unconditionally energy stable spectral deferred correction
原文传递
An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation 被引量:3
3
作者 Zhengru Zhang Zhonghua Qiao 《Communications in Computational Physics》 SCIE 2012年第4期1261-1278,共18页
This paper studies the numerical simulations for the Cahn-Hilliard equation which describes a phase separation phenomenon.The numerical simulation of the Cahn-Hilliardmodel needs very long time to reach the steady sta... This paper studies the numerical simulations for the Cahn-Hilliard equation which describes a phase separation phenomenon.The numerical simulation of the Cahn-Hilliardmodel needs very long time to reach the steady state,and therefore large time-stepping methods become useful.The main objective of this work is to construct the unconditionally energy stable finite difference scheme so that the large time steps can be used in the numerical simulations.The equation is discretized by the central difference scheme in space and fully implicit second-order scheme in time.The proposed scheme is proved to be unconditionally energy stable and mass-conservative.An error estimate for the numerical solution is also obtained with second order in both space and time.By using this energy stable scheme,an adaptive time-stepping strategy is proposed,which selects time steps adaptively based on the variation of the free energy against time.The numerical experiments are presented to demonstrate the effectiveness of the adaptive time-stepping approach. 展开更多
关键词 Adaptive time-stepping unconditionally energy stable Cahn-Hilliard equation mass conservation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部