The neural mechanisms underlying visual information transmission and coding are currently attracting the attention of neuroscience and brain-like computing scholars.The subcortical visual pathway is known to affect fe...The neural mechanisms underlying visual information transmission and coding are currently attracting the attention of neuroscience and brain-like computing scholars.The subcortical visual pathway is known to affect fear emotion regulation via the amygdala;however an experimental paradigm for visual fear cognition training remains undefined.In this study,Long-Evans(LE)rats were used to develop an experimental training paradigm for visual cognition-associated fear conditioning based on the Pavlovian conditioning reflex.Simple images were shown on a unilateral screen(conditioned stimulus)were combined with electric foot shocks(unconditioned stimulus).We designed training paradigms and set up an estimated index using the rate of successful active escape.The training results were analyzed using a two-way ANOVA,and curve fitting was used to analyze the influence of decision time between the conditioned stimulus(CS)and unconditioned stimulus(US)on choice behavior.While neither the CS nor US had a significant effect on visual fear association training in LE rats,the decision time duration(CS-US)did have an impact on training.The method described here is most effective in establishing visual fear associations in rats when the(CS-UC)=10 s.This study describes a new experimental training paradigm for fear conditioning using visual stimuli and a quantitative evaluation standard according to the training mode of visual stimulation graphics.Moreover,it is an efficient paradigm for future study on visual information-processing mechanisms in the subcortical visual pathway during fear conditioning.展开更多
基金Science and Technology Research Project of Henan Province(162102310167)A Key Science and Technology Program(17A120004)from the Education Department of Henan Province+1 种基金Open Foundation of Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology(No.HNBBL17006)National Natural Science Foundation of China(61673353)
文摘The neural mechanisms underlying visual information transmission and coding are currently attracting the attention of neuroscience and brain-like computing scholars.The subcortical visual pathway is known to affect fear emotion regulation via the amygdala;however an experimental paradigm for visual fear cognition training remains undefined.In this study,Long-Evans(LE)rats were used to develop an experimental training paradigm for visual cognition-associated fear conditioning based on the Pavlovian conditioning reflex.Simple images were shown on a unilateral screen(conditioned stimulus)were combined with electric foot shocks(unconditioned stimulus).We designed training paradigms and set up an estimated index using the rate of successful active escape.The training results were analyzed using a two-way ANOVA,and curve fitting was used to analyze the influence of decision time between the conditioned stimulus(CS)and unconditioned stimulus(US)on choice behavior.While neither the CS nor US had a significant effect on visual fear association training in LE rats,the decision time duration(CS-US)did have an impact on training.The method described here is most effective in establishing visual fear associations in rats when the(CS-UC)=10 s.This study describes a new experimental training paradigm for fear conditioning using visual stimuli and a quantitative evaluation standard according to the training mode of visual stimulation graphics.Moreover,it is an efficient paradigm for future study on visual information-processing mechanisms in the subcortical visual pathway during fear conditioning.