In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the...In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective.展开更多
After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield developme...After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield development effect. The current researches on the formation parameters variation are mainly based on the experiment analysis or field statistics, while lacking quantitative research of combining microcosmic and macroscopic mechanism. A network model was built after taking the detachment and entrapment mechanisms of particles in unconsolidated sandstone reservoir into consideration. Then a coupled mathematical model for the formation parameters variation was established based on the network modeling and the model of fluids flowing in porous media. The model was solved by a finite-difference method and the Gauss-Seidel iterative technique. A novel field-scale reservoir numerical simulator was written in Fortran 90 and it can be used to predict 1) the evolvement of high-permeability channels caused by particles release and migration in the long-term water flooding process, and 2) well production performances and remaining oil distribution. In addition, a series of oil field examples with inverted nine-spot pattern was made on the new numerical simulator. The results show that the high-permeability channels are more likely to develop along the main streamlines between the injection and production wells, and the formation parameters variation has an obvious influence on the remaining oil distribution.展开更多
The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production ...The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production in heavy oil reservoirs,for which frac-pack technique is one of the most common treatments.Hence,how to obtain the optimal fracture geometry is the key to increasing well production and preventing sand.Due to the faultiness that current optimization of the fracture geometry only depends on well productivity,fracture-flow fraction was used to describe the contribution of the fracture collecting and conducting fluids from the reservoir.The higher the fracture-flow fraction,the more likely bilinear flow pattern occurs,thus leading to smaller flow resistance and better results in oil productivity and sand prevention.A reservoir numerical simulation model was established to simulate the long-term production dynamic of a fractured well in rectangular drainage areas.In order to reach the aim of increasing productivity meanwhile preventing sand,a new method based on Unified Fracture Design was developed to optimize the fracture geometry.For a specific reservoir and a certain amount of proppant injected to the target layer,there exits an optimal dimensionless fracture conductivity which corresponds to the maximum fracture-flow fraction,accordingly we can get the optimal fracture geometry.The formulas of the optimal fracture geometry were presented on square drainage area conditions,which are very convenient to apply.Equivalent Proppant Number was used to eliminate the impact of aspect ratios of rectangular drainage area,then,the same method to optimize the fracture geometry as mentioned for square drainage areas could be adopted too.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05005-001)
文摘In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective.
文摘After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield development effect. The current researches on the formation parameters variation are mainly based on the experiment analysis or field statistics, while lacking quantitative research of combining microcosmic and macroscopic mechanism. A network model was built after taking the detachment and entrapment mechanisms of particles in unconsolidated sandstone reservoir into consideration. Then a coupled mathematical model for the formation parameters variation was established based on the network modeling and the model of fluids flowing in porous media. The model was solved by a finite-difference method and the Gauss-Seidel iterative technique. A novel field-scale reservoir numerical simulator was written in Fortran 90 and it can be used to predict 1) the evolvement of high-permeability channels caused by particles release and migration in the long-term water flooding process, and 2) well production performances and remaining oil distribution. In addition, a series of oil field examples with inverted nine-spot pattern was made on the new numerical simulator. The results show that the high-permeability channels are more likely to develop along the main streamlines between the injection and production wells, and the formation parameters variation has an obvious influence on the remaining oil distribution.
基金supported by the National Science and Technology Major Projects of China (Grant No. 2008ZX05024-03-003-004)
文摘The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil.Owing to weakly consolidated formation,sand production is an important problem encountered during oil production in heavy oil reservoirs,for which frac-pack technique is one of the most common treatments.Hence,how to obtain the optimal fracture geometry is the key to increasing well production and preventing sand.Due to the faultiness that current optimization of the fracture geometry only depends on well productivity,fracture-flow fraction was used to describe the contribution of the fracture collecting and conducting fluids from the reservoir.The higher the fracture-flow fraction,the more likely bilinear flow pattern occurs,thus leading to smaller flow resistance and better results in oil productivity and sand prevention.A reservoir numerical simulation model was established to simulate the long-term production dynamic of a fractured well in rectangular drainage areas.In order to reach the aim of increasing productivity meanwhile preventing sand,a new method based on Unified Fracture Design was developed to optimize the fracture geometry.For a specific reservoir and a certain amount of proppant injected to the target layer,there exits an optimal dimensionless fracture conductivity which corresponds to the maximum fracture-flow fraction,accordingly we can get the optimal fracture geometry.The formulas of the optimal fracture geometry were presented on square drainage area conditions,which are very convenient to apply.Equivalent Proppant Number was used to eliminate the impact of aspect ratios of rectangular drainage area,then,the same method to optimize the fracture geometry as mentioned for square drainage areas could be adopted too.