期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel face recognition in uncontrolled environment based on block 2D-CS-LBP features and deep residual network 被引量:2
1
作者 Minghua Wei 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期207-221,共15页
Purpose-In order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination,background,occlusion and other factors,we propose a ... Purpose-In order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination,background,occlusion and other factors,we propose a novel face recognition algorithm in uncontrolled environment which combines the block central symmetry local binary pattern(CS-LBP)and deep residual network(DRN)model.Design/methodology/approach-The algorithm first extracts the block CSP-LBP features of the face image,then incorporates the extracted features into the DRN model,and gives the face recognition results by using a well-trained DRN model.The features obtained by the proposed algorithm have the characteristics of both local texture features and deep features that robust to illumination.Findings-Compared with the direct usage of the original image,the usage of local texture features of the image as the input of DRN model significantly improves the computation efficiency.Experimental results on the face datasets of FERET,YALE-B and CMU-PIE have shown that the recognition rate of the proposed algorithm is significantly higher than that of other compared algorithms.Originality/value-The proposed algorithm fundamentally solves the problem of face identity recognition in uncontrolled environment,and it is particularly robust to the change of illumination,which proves its superiority. 展开更多
关键词 Local binary patterns Block texture features Deep residual networks uncontrolled environment Face recognition
原文传递
Dataset of Large Gathering Images for Person Identification and Tracking
2
作者 Adnan Nadeem Amir Mehmood +7 位作者 Kashif Rizwan Muhammad Ashraf Nauman Qadeer Ali Alzahrani Qammer H.Abbasi Fazal Noor Majed Alhaisoni Nadeem Mahmood 《Computers, Materials & Continua》 SCIE EI 2023年第3期6065-6080,共16页
This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi,Madinah,Saudi Arabia.This dataset consists of raw and processed ... This paper presents a large gathering dataset of images extracted from publicly filmed videos by 24 cameras installed on the premises of Masjid Al-Nabvi,Madinah,Saudi Arabia.This dataset consists of raw and processed images reflecting a highly challenging and unconstraint environment.The methodology for building the dataset consists of four core phases;that include acquisition of videos,extraction of frames,localization of face regions,and cropping and resizing of detected face regions.The raw images in the dataset consist of a total of 4613 frames obtained fromvideo sequences.The processed images in the dataset consist of the face regions of 250 persons extracted from raw data images to ensure the authenticity of the presented data.The dataset further consists of 8 images corresponding to each of the 250 subjects(persons)for a total of 2000 images.It portrays a highly unconstrained and challenging environment with human faces of varying sizes and pixel quality(resolution).Since the face regions in video sequences are severely degraded due to various unavoidable factors,it can be used as a benchmark to test and evaluate face detection and recognition algorithms for research purposes.We have also gathered and displayed records of the presence of subjects who appear in presented frames;in a temporal context.This can also be used as a temporal benchmark for tracking,finding persons,activity monitoring,and crowd counting in large crowd scenarios. 展开更多
关键词 Large crowd gatherings a dataset of large crowd images highly uncontrolled environment tracking missing persons face recognition activity monitoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部