A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame...A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.展开更多
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ...The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.展开更多
This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessi...This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.展开更多
The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to th...The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.展开更多
Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and ...Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future.展开更多
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al...Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.展开更多
In order to assess the effects of tuned mass dampers (TMDs) on wind actions, an aeroelastic model with a scale of 1:60 was constructed. Tests were performed in an atmospheric boundary layer wind tunnel to investiga...In order to assess the effects of tuned mass dampers (TMDs) on wind actions, an aeroelastic model with a scale of 1:60 was constructed. Tests were performed in an atmospheric boundary layer wind tunnel to investigate the buffeting response of the pylon with a TMD fixed by a wire rope instead of a spring. The model was tested under different levels of damping. The experimental and numerical results showed that with the TMD in the optimal condition, the buffeting response was reduced by 47%.展开更多
The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in t...The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in the design and construction technologies. In parallel to the lengthening and enlargement in scale of the structures, securing quality control technology of concrete while reducing the construction duration using improved construction methods emerges as a critical problem for concrete structures. In the erection of concrete pylons, slip forming represents the latest method offering the advantage of reducing drastically the construction duration compared to other methods by adopting automated slip-up of the forms and enabling 24-hour continuous placing. This study determines the slip-up time of the slip form by evaluating the early strength through the surface wave velocity and develops lightweight GFRP form in order to secure the quality of concrete during the slip form erection of pylons. A slip form system is fabricated and mockup test is conducted to verify the performances of the developed techniques through the construction of 10 m-high pylon with a hollow section.展开更多
We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key k...We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.展开更多
The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete ...The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.展开更多
Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal ri...Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.展开更多
基金support by National Natural Science Foundation of China(Grant No.50975012)
文摘A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.
基金Foundation item: National Natural Science Foundation of China (10377015)
文摘The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.
文摘This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.
基金The National Natural Science Foundation of China (Nos. 50808148 and 90815016)
文摘In order to assess the effects of tuned mass dampers (TMDs) on wind actions, an aeroelastic model with a scale of 1:60 was constructed. Tests were performed in an atmospheric boundary layer wind tunnel to investigate the buffeting response of the pylon with a TMD fixed by a wire rope instead of a spring. The model was tested under different levels of damping. The experimental and numerical results showed that with the TMD in the optimal condition, the buffeting response was reduced by 47%.
文摘The construction market of super-high-rise buildings and long-span bridges has recognized unprecedented expansion owing to the development of high performance and high strength materials and the advances achieved in the design and construction technologies. In parallel to the lengthening and enlargement in scale of the structures, securing quality control technology of concrete while reducing the construction duration using improved construction methods emerges as a critical problem for concrete structures. In the erection of concrete pylons, slip forming represents the latest method offering the advantage of reducing drastically the construction duration compared to other methods by adopting automated slip-up of the forms and enabling 24-hour continuous placing. This study determines the slip-up time of the slip form by evaluating the early strength through the surface wave velocity and develops lightweight GFRP form in order to secure the quality of concrete during the slip form erection of pylons. A slip form system is fabricated and mockup test is conducted to verify the performances of the developed techniques through the construction of 10 m-high pylon with a hollow section.
基金support of the German Research Foundation (DFG) through Grant SM 281/20-1the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd Call for PhD fellowships (Fellowship Number: 6522)
文摘We present a statistical investigation of the degree of influence that assumptions made in relation to the mechanical parameters of a pylon have on its ground-induced vibrations.The study is set up by using as a key kinematic variable the displacement at the top of a reference,a stand-alone pylon with a uniform cross-section and fixity at its base.Next,statistics are produced using a dimensionless displacement ratio defined between the‘parental’and the‘subsidiary’cases,the latter defined for the pylon(a)resting on compliant soil,(b)having an attached top mass,and(c)being non-uniform with height.Furthermore,two materials are examined,namely,steel and reinforced concrete(R/C).More specifically,this displacement ratio is independent of the excitation and plays the role of a transfer function between the base and the top of the pylon.Both horizontal and vertical motions are considered,and the equations of motion are solved in the frequency domain.The ensuing statistical analysis is conducted for the following parameter combinations:(a)pylon founded on soft,intermediate,and stiff soil;(b)low,intermediate,and high-mass ratios of the attached mass to the pylon′s mass;(c)a constant and quadratic degree of pylon tapering with height.Spearman correlation coefficients are calculated for all the above combinations to arrive at statistical results that establish validity bounds and quantify the degree of influence of each assumption on the pylon′s response.
文摘The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.
文摘Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future.