This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and...This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and civil, such as defence and security, medical applications, industrial surveillance, etc. Series of measurements were conducted to obtain TCC (temperature coefficient of current) versus gate voltage and temperature curves. The TCC is a figure of merit for a device used as the sensitive element in a bolometer that represents its sensitivity to temperature and as such is a good indicator of the detector attainable performance. The measurements were confronted to Atlas simulations, and showed that in the subthreshold region the TCC ranges from 4%/K all the way to 9%/K which represents a great improvement compared to state of the art thermistor bolometers. Analytic expressions of the TCC are also derived from current equations of the MOSFET (MOS field effect transistor) drain current to help understanding the effect of drain to source voltage, mobility, temperature and threshold voltage sensibility to temperature, in all three operation modes of the transistor (subthreshold, ohmic and saturation). It was also determined that gate length does not have an influence on the TCC until short channel effects are factored in.展开更多
文摘This paper focuses on the study of thermal performances of MOS (metal-oxide-semiconductor) transistors for uncooled infrared bolometer applications. Such devices can be used in various applications both military and civil, such as defence and security, medical applications, industrial surveillance, etc. Series of measurements were conducted to obtain TCC (temperature coefficient of current) versus gate voltage and temperature curves. The TCC is a figure of merit for a device used as the sensitive element in a bolometer that represents its sensitivity to temperature and as such is a good indicator of the detector attainable performance. The measurements were confronted to Atlas simulations, and showed that in the subthreshold region the TCC ranges from 4%/K all the way to 9%/K which represents a great improvement compared to state of the art thermistor bolometers. Analytic expressions of the TCC are also derived from current equations of the MOSFET (MOS field effect transistor) drain current to help understanding the effect of drain to source voltage, mobility, temperature and threshold voltage sensibility to temperature, in all three operation modes of the transistor (subthreshold, ohmic and saturation). It was also determined that gate length does not have an influence on the TCC until short channel effects are factored in.