期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
One-to-Any Command and Control Model:Precisely Coordinated Operation on Uncooperative Controlled Nodes 被引量:1
1
作者 QIU Han LI Yufeng +1 位作者 LI Heshuai ZHU Junhu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第6期490-498,共9页
New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given ra... New precisely cooperative attacks, such as the coordi- nated cross plane session termination (CXPST) attack, need thou- sands upon thousands machines to attack diverse selected links simultaneously with the given rate. However, almost all command and control(C&C) mechanisms only provide publishing one com- mand to the whole once, so-called one-to-all C&C model, and are not productive to support CXPST-alike attacks. In this paper, we present one-to-any C&C model on coordination among the unco- operative controlled nodes. As an instance of one-to-any C&C model, directional command publishing (DCP) mechanism lever- aging on Kademlia is provided with a range-mapping key creating algorithm for commands to compute the publishing range and a statistically stochastic node querying scheme to obtain the com- mands immediately. With theoretical analysis and simulation, it is indicated that one-to-any C&C model fits for precisely coordi- nated operation on uncooperative controlled nodes with least complexity, better accuracy and efficiency. Furthermore, DCP mechanism can support one-to-all command publishing at the same time. As an example of future C&C model, studying on one-to-any C&C model may help to promote the development of more efficient countermeasures. 展开更多
关键词 one-to-any command and control(C&C) model directional command publishing(DCP) mechanism precisely cooperative attack uncooperative controlled node
原文传递
An ab initio study on boundaries for characterizing cooperative effect of hydrogen bonds by intermolecular compression
2
作者 Rui Liu Rui Wang +3 位作者 Danhui Li Yu Zhu Xinrui Yang Zhigang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期467-471,共5页
The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds(H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles w... The cooperative effect plays a significant role in understanding the intermolecular donor-acceptor interactions of hydrogen bonds(H-bonds, D-H···A). Here, using the coupled-cluster singles and doubles with perturbative triple excitations(CCSD(T)) method of high-precision ab initio calculations, we show that the intermolecular H-bonded systems with different D and A atoms reproduce the structural changes predicted by the well-known cooperative effect upon intermolecular compression. That is, with decreasing intermolecular distance, the D-H bond length first increases and then decreases, while the H···A distance decreases. On the contrary, when D and A are the same, as the intermolecular distance decreases, the D-H bond length decreases without increasing. This obvious difference means that the cooperative effect may not be generally characterized by intermolecular compression. Interestingly, further analyses of many intermolecular systems confirm that this failure has boundaries, i.e., cooperative systems at their respective equilibrium positions have a smaller core-valence bifurcation(CVB) index(<0.022) and stronger binding energies(>0.25 eV), showing a clear linear inverse relationship related to H-bond strength. These findings provide an important reference for the comprehensive understanding of H-bonds and its calculation methods. 展开更多
关键词 Cooperative effect uncooperative effect Ab initio Hydrogen bond Intermolecular compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部