期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Prediction of undeformed chip thickness distribution and surface roughness in ultrasonic vibration grinding of inner hole of bearings
1
作者 Yanqin LI Daohui XIANG +2 位作者 Guofu GAO Feng JIAO Bo ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第4期311-323,共13页
Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and ... Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and impact the surface roughness of workpiece.However,previous studies used iterative method to calculate the unformed chip thickness(UCT),which has low computational efficiency.In this study,a symbolic difference method is proposed to calculate the UCT.The UCT distributions are obtained to describe the stochastic interaction characteristics of ultrasonic grinding process.Meanwhile,the UCT distribution characteristics under different machining parameters are analyzed.Then,a surface roughness prediction model is established based on the UCT distribution.Finally,the correctness of the model is verified by experiments.This study provides a quick and accurate method for predicting surface roughness in longitudinal ultrasonic vibration grinding. 展开更多
关键词 Ultrasonic vibration grinding undeformed chip thickness(UCT) Distribution characteristics Surface roughness
原文传递
Research on Three-Dimensional Simulation of the Internal Arc Gear Skiving
2
作者 Xiaoqiang WU Rui XUE +9 位作者 Erkuo GUO Dongzhou JIA Taiyan GONG Zengrong LI Haijun YANG Xiaoxue LI Xin JIANG Shuai DING Yong LIU Shitian LI 《Mechanical Engineering Science》 2024年第1期35-40,共6页
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat... Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method. 展开更多
关键词 gear skiving undeformed three-dimensional chips solid modeling
下载PDF
Material Removal Mechanism and Force Modeling in Ultrasonic Vibration-Assisted Micro-Grinding Biological Bone 被引量:1
3
作者 Jingang Sun Changhe Li +10 位作者 Zongming Zhou Bo Liu Yanbin Zhang Min Yang Teng Gao Mingzheng Liu Xin Cui Benkai Li Runze Li Yusuf Suleiman Dambatta Shubham Sharma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期20-44,共25页
Micro-grinding with a spherical grinding head has been deemed an indispensable method in high-risk surgeries, such as neurosurgery and spine surgery, where bone grinding has long been plagued by the technical bottlene... Micro-grinding with a spherical grinding head has been deemed an indispensable method in high-risk surgeries, such as neurosurgery and spine surgery, where bone grinding has long been plagued by the technical bottleneck of mechanical stress-induced crack damage. In response to this challenge, the ultrasound-assisted biological bone micro-grinding novel process with a spherical grinding head has been proposed by researchers. Force modeling is a prerequisite for process parameter determination in orthopedic surgery, and the difculty in establishing and accurately predicting bone micro-grinding force prediction models is due to the geometric distribution of abrasive grains and the dynamic changes in geometry and kinematics during the cutting process. In addressing these critical needs and technical problems, the shape and protrusion heights of the wear particle of the spherical grinding head were frst studied, and the gradual rule of the contact arc length under the action of high-speed rotating ultrasonic vibration was proposed. Second, the mathematical model of the maximum thickness of undeformed chips under ultrasonic vibration of the spherical grinding head was established. Results showed that ultrasonic vibration can reduce the maximum thickness of undeformed chips and increase the range of ductile and bone meal removals, revealing the mechanism of reducing grinding force. Further, the dynamic grinding behavior of diferent layers of abrasive particles under diferent instantaneous interaction states was studied. Finally, a prediction model of micro-grinding force was established in accordance with the relationship between grinding force and cutting depth, revealing the mechanism of micro-grinding force transfer under ultrasonic vibration. The theoretical model’s average deviations are 10.37% in x-axis direction, 6.85% in y-axis direction, and 7.81% in z-axis direction compared with the experimental results. This study provides theoretical guidance and technical support for clinical bone micro-grinding. 展开更多
关键词 Spherical grinding head Gradual contact arc length Maximum undeformed chip thickness Microgrinding force
下载PDF
Prediction of Grinding Force by an Electroplated Grinding Wheel with Orderly-Micro-Grooves
4
作者 Cong Mao Jiali Wang +7 位作者 Mingjun Zhang Xincheng Wang Yuanqiang Luo Weidong Tang Kun Tang Zhuming Bi Yongle Hu Zhenheng Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期56-66,共11页
The ability to predict a grinding force is important to control,monitor,and optimize the grinding process.Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding... The ability to predict a grinding force is important to control,monitor,and optimize the grinding process.Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding process.This paper aimed to establish a single-grit cutting force model to predict the ploughing,friction and cutting forces in a grinding process.It took into the consideration of actual topography of the grinding wheel,and a theoretical grinding force model for grinding hardened AISI 52100 by the wheel with orderly-micro-grooves was proposed.The model was innovative in the sense that it represented the random thickness of undeformed chips by a probabilistic expression,and it reflected the microstructure characteristics of the structured wheel explicitly.Note that the microstructure depended on the randomness of the protruding heights and distribution density of the grits over the wheel.The proposed force prediction model was validated by surface grinding experiments,and the results showed(1)a good agreement of the predicted and measured forces and(2)a good agreement of the changes of the grinding forces along with the changes of grinding parameters in the prediction model and experiments.This research proposed a theoretical grinding force model of an electroplated grinding wheel with orderly-micro-grooves which is accurate,reliable and effective in predicting grinding forces. 展开更多
关键词 Electroplated grinding wheel Orderly-micro-grooves Grinding force Force prediction undeformed chip thickness Experimental validation
下载PDF
A review on ductile mode cutting of brittle materials 被引量:7
5
作者 Elijah Kwabena ANTWI Kui LIU Hao WANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第2期251-263,共13页
Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials b... Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteris- tics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously. 展开更多
关键词 ductile mode cutting brittle materials critical undeformed chip thickness brittle-ductile transition subsurface damage molecular dynamic simulation
原文传递
Feedrate scheduling method for constant peak cutting force in five-axis flank milling process 被引量:6
6
作者 Liping WANG Xing YUAN +1 位作者 Hao SI Feiyu DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期2055-2069,共15页
It is extremely important to select appropriate feedrates for the stable machining of parts with ruled surface in modern aviation industrial applications.However,the current studies take too much time to achieve this ... It is extremely important to select appropriate feedrates for the stable machining of parts with ruled surface in modern aviation industrial applications.However,the current studies take too much time to achieve this goal.Therefore,this paper presents an efficient feedrate optimization method for constant peak cutting force in five-axis flank milling process.The solution method of the instantaneous undeformed chip thickness(IUCT)is proposed using least squares theory with the cutter entry angle and feedrate as variables.Based on this method,an explicit analytical expression of the peak cutting force for each cutting point is established.Furthermore,a feedrate scheduling method is developed to quickly solve the appropriate feedrate under constant peak cutting force.To verify the proposed IUCT model,the fitting IUCT is compared with the accuracy data at different feedrates.Additionally,some experiments of five-axis flank milling are conducted to demonstrate the effectiveness of the peak force model and the feedrate scheduling method.And the surface roughness before and after feedrate scheduling is detected.The results show that the proposed feedrate scheduling method can quickly adjust the feedrate and ensure constant peak force during machining.At the same time,the surface quality is kept at a high level. 展开更多
关键词 Cutter runout Feedrate scheduling Force control Instantaneous undeformed chip thickness Peak cutting force
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部