期刊文献+
共找到483篇文章
< 1 2 25 >
每页显示 20 50 100
Adaptive Sensor-Fault Tolerant Control of Unmanned Underwater Vehicles With Input Saturation
1
作者 Xuerao Wang Qingling Wang +2 位作者 Yanxu Su Yuncheng Ouyang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期907-918,共12页
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault... This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Asymptotic stability fault-tolerant control input saturation robust integral of the sign of error unmanned underwater vehicle
下载PDF
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:8
2
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 underwater OBSTACLE AVOIDANCE real-time pathre-planning A* ALGORITHM SONAR image unmanned surface vehicle
下载PDF
Technology Development of Unmanned Underwater Vehicles (UUVs) 被引量:8
3
作者 Jinyeong Heo Junghoon Kim Yongjin Kwon 《Journal of Computer and Communications》 2017年第7期28-35,共8页
In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those ... In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those changes. Especially, in case of maritime environment, as the center stage of combat has changed from ocean to coastal areas, it is difficult for the existing naval forces to effectively operate in shallow waters. Therefore, unmanned underwater vehicles (UUVs) are being required at an increasing pace. In this paper, we analyze the characteristics of already developed UUVs, which are the key unmanned system of the marine battlefield environment in the future. Through the analysis of development cases and the investigation of the essential technologies, the critical design issues of UUVs are elaborated. We also suggest the future directions of the UUV technologies based on the case analysis. 展开更多
关键词 MARITIME MILITARY SYSTEM unmanned SYSTEM UUV (unmanned underwater vehicle) UUV Operation Function AUTONOMOUS Control
下载PDF
Application of unmanned underwater vehicles in polar research 被引量:4
4
作者 ZENG Junbao LI Shuo LIU Ya 《Advances in Polar Science》 CSCD 2021年第3期173-184,共12页
The importance of polar ice as vital components of the global ocean-climate system is widely recognized.In this paper,we demonstrate the importance and urgency of polar research,describe the primary characteristics of... The importance of polar ice as vital components of the global ocean-climate system is widely recognized.In this paper,we demonstrate the importance and urgency of polar research,describe the primary characteristics of sea ice and ice shelves,and outline the current status and difficulties associated with sub-ice research.We highlight the importance of Unmanned Underwater Vehicles(UUVs)as important tools for oceanographic research.We present recent progress in UUV deployment in sub-ice research in the Arctic and the Antarctic,and review the latest international developments in UUV structure,navigation,payload,and field operation.Moreover,Chinese polar UUVs and their deployments in the polar regions are presented in detail.Key technologies and solutions regarding polar application of UUVs(e.g.,sub-ice navigation and positioning,energy supply and data transmission,and sub-ice guidance and recovery)are discussed.Given the current worldwide attention on polar science,the potential future directions of UUV-related polar research(e.g.,observations under Antarctic ice shelves,long-range surveys beneath Arctic sea ice and application of intelligent technology)are discussed. 展开更多
关键词 unmanned underwater vehicle POLAR OCEAN SCIENTIFIC investigation KEY technologies development TREND
下载PDF
Using Unmanned Underwater Vehicles as Research Platforms in Coastal Ocean Studies 被引量:3
5
作者 HOUWeilin KendallL.Carder +2 位作者 DavidK.Costello DUKeping LIUZhishen 《Journal of Ocean University of Qingdao》 2003年第2期211-217,共7页
The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from Universi... The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed. 展开更多
关键词 unmanned underwater vehicle (UUV) remotely operated vehicle (ROV) autonomous underwater vehicle (AUV) bottom classification and albedo package (BCAP) real-time ocean bottom optical topographer (ROBOT)
下载PDF
Experimental Study of a Modified Command Governor Adaptive Controller for Depth Control of an Unmanned Underwater Vehicle
6
作者 Charita D.Makavita Shantha G.Jayasinghe +1 位作者 Hung D.Nguyen Dev Ranmuthugala 《Journal of Marine Science and Application》 CSCD 2021年第3期504-523,共20页
Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with param... Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with parameter variations.CGAC is derived from standard model reference adaptive control(MRAC)by adding a command governor that guarantees acceptable transient performance without compromising stability and a command filter that improves the robustness against noise and time delay.Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over MRAC for UUVs,it has also shown that the command filter leads to a marked reduction in initial tracking performance of CGAC.As a solution,this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall tracking performance.The new modified CGAC(M-CGAC)has been experimentally validated and the results indicate that it successfully mitigates the initial tracking performance reduction,significantly improves the overall tracking performance,uses less control force,and increases the robustness to noise and time delay.Thus,M-CGAC is a viable adaptive control algorithm for current and future UUV applications. 展开更多
关键词 Command governor adaptive control Measurement noise Time delay Transient tracking unmanned underwater vehicles ROBUSTNESS
下载PDF
Multiple Unmanned Underwater Vehicles Consensus Control with Unmeasurable Velocity Information and Environmental Disturbances Under Switching Directed Topologies
7
作者 YAN Zhe-ping WU Yi +2 位作者 LIU Yi-bo REN Hong-liang DU Xue 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期631-640,共10页
A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned under... A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example. 展开更多
关键词 multiple unmanned underwater vehicles feedback linearization distributed extended state observe switching directed topologies
下载PDF
Hydrodynamic Modeling with Grey-Box Method of A Foil-Like Underwater Vehicle 被引量:3
8
作者 LIU Xin-yu LI Yi-ping +1 位作者 WANG Ya-xing FENG Xi-sheng 《China Ocean Engineering》 SCIE EI CSCD 2017年第6期773-780,共8页
In this study, a dynamic modeling method for foil-like underwater vehicles is introduced and experimentally verified in different sea tests of the Hadal ARV. The dumping force of a foil-like underwater vehicle is sens... In this study, a dynamic modeling method for foil-like underwater vehicles is introduced and experimentally verified in different sea tests of the Hadal ARV. The dumping force of a foil-like underwater vehicle is sensitive to swing motion. Some foil-like underwater vehicles swing periodically when performing a free-fall dive task in experiments. Models using conventional modeling methods yield solutions with asymptotic stability, which cannot simulate the self-sustained swing motion. By improving the ridge regression optimization algorithm, a grey-box modeling method based on 378 viscous drag coefficients using the Taylor series expansion is proposed in this study. The method is optimized for over-fitting and convergence problems caused by large parameter matrices. Instead of the PMM test data, the unsteady computational fluid dynamics calculation results are used in modeling. The obtained model can better simulate the swing motion of the underwater vehicle. Simulation and experimental results show a good consistency in free-fall tests during sea trials, as well as a prediction of the dive speed in the swing state. 展开更多
关键词 unmanned underwater vehicle grey-box model HYDRODYNAMICS ridge regression CORRELATIONS
下载PDF
A new robust fuzzy method for unmanned flying vehicle control 被引量:5
9
作者 Mojtaba Mirzaei Mohammad Eghtesad Mohammad Mahdi Alishahi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2166-2182,共17页
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T... A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance. 展开更多
关键词 adaptive fuzzy sliding-mode control unmanned flying vehicle control underactuated system Lyapunov stability high speed underwater vehicle
下载PDF
Submarine Hunter: Efficient and Secure Multi-Type Unmanned Vehicles
10
作者 Halah Hasan Mahmoud Marwan Kadhim Mohammed Al-Shammari +5 位作者 Gehad Abdullah Amran Elsayed Tag eldin Ala R.Alareqi Nivin A.Ghamry Ehaa A.Lnajjar Esmail Almosharea 《Computers, Materials & Continua》 SCIE EI 2023年第7期573-589,共17页
Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Un... Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target. 展开更多
关键词 unmanned vehicles unmanned aerial vehicles unmanned underwater vehicles high altitude unmanned aerial vehicles anti-submarine warfare re-fragmentation dragonfly algorithm
下载PDF
A hybrid tracking control strategy for an unmanned underwater vehicle aided with bioinspired neural dynamics 被引量:1
11
作者 Zhe Xu Tao Yan +1 位作者 Simon X.Yang S.Andrew Gadsden 《IET Cyber-Systems and Robotics》 EI 2022年第3期153-162,共10页
Tracking control has been a vital research topic in robotics.This paper presents a novel hybrid control strategy for an unmanned underwater vehicle(UUV)based on a bio-inspired neural dynamics model.An enhanced backste... Tracking control has been a vital research topic in robotics.This paper presents a novel hybrid control strategy for an unmanned underwater vehicle(UUV)based on a bio-inspired neural dynamics model.An enhanced backstepping kinematic control strategy is first developed to avoid sharp velocity jumps and provides smooth velocity commands relative to conventional methods.Then,a novel sliding mode control is proposed,which is capable of providing smooth and continuous torque commands free from chattering.In comparative studies,the proposed combined hybrid control strategy has ensured control signal smoothness,which is critical in real‐world applications,especially for a UUV that needs to operate in complex underwater environments. 展开更多
关键词 BACKSTEPPING bioinspired neural dynamics sliding mode control unmanned underwater vehicle
原文传递
Attitude Stabilization of Unmanned Underwater Vehicle During Payloads Release
12
作者 DENG Xu FENG Zhengping +1 位作者 HE Chenlu CUI Zhenhua 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第5期766-772,共7页
Large unmanned underwater vehicles can carry big payloads for varied missions and it is desirable for them to possess an upright orientation during payload release.Their attitude can hardly be maintained during and af... Large unmanned underwater vehicles can carry big payloads for varied missions and it is desirable for them to possess an upright orientation during payload release.Their attitude can hardly be maintained during and after the phase of payload release.Releasing a payload from the vehicle induces uncertainties not only in rigid-body parameters,e.g,the moment of inertia tensor due to the varying distribution of the masses on board the vehicle,but also in the hydrodynamic derivatives due to the vehicle’s varying geometric profile.A nonlinear attitude stabilizer that is robust to these time-varying model uncertainties is proposed in this paper.Stability is guaranteed via Lyapunov stability theory.The simulation results verify the effectiveness of the proposed approach. 展开更多
关键词 unmanned underwater vehicle payloads release attitude stabilization Lyapunov stability
原文传递
A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle
13
作者 Jiu-cai JIN Jie ZHANG Zhi-chao LV 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第6期751-759,共9页
A novel controller for finding the best communication point is proposed for collecting data from a seabed platform by a single unmanned surface vehicle(USV) using underwater acoustic communication(UAC). As far as we k... A novel controller for finding the best communication point is proposed for collecting data from a seabed platform by a single unmanned surface vehicle(USV) using underwater acoustic communication(UAC). As far as we know, extremum seeking based on climbing control is usually implemented by multiple vehicles or agents because of the large range of measurement and easy acquisition of gradient estimation. A single vehicle cannot rapidly estimate the field because of the limited extent for measurement;therefore, it is difficult for a single vehicle to seek the extremum point in a field. In this study, an oscillation motion(OM) is designed for a single USV to acquire UAC’s link strength data between the seabed platform and the USV. The field for UAC’s link strength is updated using new measurement from an OM of the USV based on a multi-variable weight linear iteration method. A controller for seeking the best UAC’s point of the USV is designed using gradient climbing and artificial potential considering iterative estimation of an unknown field and an OM operation, and the stability is proved. The reliability and efficiency are shown in simulation results. 展开更多
关键词 unmanned surface vehicle Data collection underwater acoustic communication Gradient CLIMBING Extremum SEEKING
原文传递
基于BP神经网络的非线性流域UUV动态回收过程预测 被引量:1
14
作者 杜晓旭 李瀚宇 刘鑫 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第2期189-196,共8页
针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经... 针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经网络的初始数据,利用拉丁超立方法对非线性流域的位置随机采样,采用神经网络输出UUV在采样处的水动力系数,实现非线性流域内UUV动态回收过程的水动力系数预测。结果表明:通过均方根检验神经网络预测水动力系数误差均在10%范围内。将神经网络预测结果与UUV纵向操纵性方程结合,对比回收速度和操舵间隔与理论回收轨迹的误差,优化UUV动态回收路径的闭环控制方案。 展开更多
关键词 神经网络 非线性流域 水动力系数 UUV动态回收
下载PDF
水下无人航行器高速航行下的运动特性及仿真控制研究
15
作者 王磊 任梦晨 +3 位作者 张占阳 李德军 张伟 杨青松 《舰船科学技术》 北大核心 2024年第6期86-89,共4页
水下无人航行器具有水下活动范围大、机动性好优点,主要用于大范围地形地貌勘探,水下高速长航程航行时,水下航行器运动特性和姿态控制是研究重点。本文建立水下航行器垂直面航行运动模型,分析高速航行下的运动特性。为保证高速航行高效... 水下无人航行器具有水下活动范围大、机动性好优点,主要用于大范围地形地貌勘探,水下高速长航程航行时,水下航行器运动特性和姿态控制是研究重点。本文建立水下航行器垂直面航行运动模型,分析高速航行下的运动特性。为保证高速航行高效稳定,提出PID方法控制纵倾和滑模方法控制深度的组合控制策略。通过仿真试验,开展高速航行运动仿真研究。研究结果表明,在高速航行下,水下航行器会产生一定纵倾,且随着航速增加,纵倾影响会越大,高速状态放大了水下航行器外形上下轻微不对称的特性,诱导产生的垂向水动力及力矩增大,进而引起纵倾;在高速航行条件下,水下航行器能稳定保持定深度长距离航行,控制策略具有很好的适用性。 展开更多
关键词 水下无人航行器 运动特性 高速航行 仿真 控制
下载PDF
水下航行体极限大机动流动分离大涡模拟研究
16
作者 李永成 李迎华 潘子英 《舰船科学技术》 北大核心 2024年第13期14-17,共4页
针对大机动极限工况下水下航行体流动分离带来的机动性不足问题,本文以Suboff标模为研究对象,采用大涡模拟数值计算方法开展大机动工况下水下航行体的流体动力性能评估,并完成水下航行体尾部及舵面流动分离涡旋结构的精细捕捉。本文研... 针对大机动极限工况下水下航行体流动分离带来的机动性不足问题,本文以Suboff标模为研究对象,采用大涡模拟数值计算方法开展大机动工况下水下航行体的流体动力性能评估,并完成水下航行体尾部及舵面流动分离涡旋结构的精细捕捉。本文研究成果可为后续极限机动工况下水下航行体流动控制提供技术支撑。 展开更多
关键词 水下航行体 大机动工况 流动分离 大涡模拟
下载PDF
近海复杂环境下UUV动态路径规划方法研究
17
作者 张宏瀚 王亚博 +2 位作者 李娟 王元慧 严浙平 《智能系统学报》 CSCD 北大核心 2024年第1期114-121,共8页
为解决近海环境下水下无人航行器(unmanned underwater vehicle,UUV)的动态路径规划问题,本文提出一种结合全局和局部动态路径规划的算法。首先,本文提出一种基于自适应目标引导的快速拓展随机树算法,以增加随机树生长的方向性,并通过... 为解决近海环境下水下无人航行器(unmanned underwater vehicle,UUV)的动态路径规划问题,本文提出一种结合全局和局部动态路径规划的算法。首先,本文提出一种基于自适应目标引导的快速拓展随机树算法,以增加随机树生长的方向性,并通过转向和重选策略减少无效拓展加快算法的收敛速度。接着,获得全局路径之后使用自适应子节点选取策略获取动态窗口法的子目标点,将复杂的全局动态任务规划分解为多个简单的动态路劲规划,从而防止动态窗口法陷入局部极小值。最后,通过UUV出港任务仿真实验验证了算法的有效性和实用性。 展开更多
关键词 水下无人航行器 动态路径规划 快速拓展随机树 动态窗口 自适应 水下环境 局部路径规划 避障
下载PDF
无人航行器声隐身性能提升研究
18
作者 魏建红 向阳 《噪声与振动控制》 CSCD 北大核心 2024年第6期206-211,272,共7页
针对小几何尺度的无人航行器(Unmanned Underwater Vehicle,UUV)中减振技术的应用问题,建立尺度较小的SUBOFF无人航行器有限元模型。分析其在典型激励下的声振特性,探讨阻振、吸振技术在UUV上的应用,并且基于声学黑洞结构设计UUV舱段,... 针对小几何尺度的无人航行器(Unmanned Underwater Vehicle,UUV)中减振技术的应用问题,建立尺度较小的SUBOFF无人航行器有限元模型。分析其在典型激励下的声振特性,探讨阻振、吸振技术在UUV上的应用,并且基于声学黑洞结构设计UUV舱段,分析其减振效果。研究结果表明:无人航行器结构振动和辐射噪声的峰值频率与整体和局部结构的模态频率关系较大。在推进电机基座、推力轴承基座等结构上应用阻振质量和动力吸振器可有效减小艇体振动,吸振器质量增加可改善吸振效果。设计声学黑洞(Acoustic Black Hole,ABH)舱段并应用于艇体的中部均匀部分,可有效减小结构振动由激励源向船艏的传递,体现该方案的减振效果。 展开更多
关键词 声学 无人航行器 减振降噪技术 声学黑洞 阻振 吸振
下载PDF
水下无人系统通用质量特性工程技术发展与挑战
19
作者 汪凯蔚 黄铎佳 +1 位作者 王斗辉 蔡玉红 《电子产品可靠性与环境试验》 2024年第5期1-5,共5页
通用质量特性工程技术是保障水下无人系统在复杂海洋环境下的任务出动能力、执行能力和生存能力的重要技术之一。回顾了水下无人系统的发展现状,从复杂环境适应性、智能化特征可靠性和集群化特征可靠性3个角度分析了水下无人系统通用质... 通用质量特性工程技术是保障水下无人系统在复杂海洋环境下的任务出动能力、执行能力和生存能力的重要技术之一。回顾了水下无人系统的发展现状,从复杂环境适应性、智能化特征可靠性和集群化特征可靠性3个角度分析了水下无人系统通用质量特性技术的发展方向和面临的主要挑战,为我国水下无人系统装备通用质量特性工程技术发展提供了一条参考思路。 展开更多
关键词 水下无人系统 通用质量特性 智能化 集群化 无人化 发展方向 主要挑战
下载PDF
海水对UUV WPT系统的影响及耦合机构的补偿研究
20
作者 高国章 于梓航 李佳奇 《船舶工程》 CSCD 北大核心 2024年第2期18-23,33,共7页
针对水下无人航行器(UUV)无线电能传输(WPT)系统的效率和稳定性问题,建立了水下WPT等效电路,并对其工作原理进行了数学推导和分析。以此为基础研究了海水环境对WPT电路性能的影响机理,推导出了WPT系统在海水中的传输功率及效率模型。由... 针对水下无人航行器(UUV)无线电能传输(WPT)系统的效率和稳定性问题,建立了水下WPT等效电路,并对其工作原理进行了数学推导和分析。以此为基础研究了海水环境对WPT电路性能的影响机理,推导出了WPT系统在海水中的传输功率及效率模型。由于在海浪和海流等水下外界干扰下电能传输机构的收/发端均会产生偏移,从而影响系统电能传输的稳定性和效率。为减小影响,分析了4种典型拓扑补偿电路结构,并给出了最优补偿电路选取原则。最后,在MATLAB平台进行验证,结果验证了数学推导的正确性以及补偿电路设计的有效性。研究结果可为类似水下无线供电系统的设计提供借鉴。 展开更多
关键词 水下无人航行器 无线电能传输 电路拓扑设计 海浪海流干扰
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部