Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplific...Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density(PSD) and signal-to-noise ratio(SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.展开更多
Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is...Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11772048)
文摘Stochastic resonance(SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory(LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density(PSD) and signal-to-noise ratio(SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.
文摘Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.