期刊文献+
共找到1,775篇文章
< 1 2 89 >
每页显示 20 50 100
A stable staggered-grid finite-difference scheme for acoustic modeling beyond conventional stability limit
1
作者 Jing-Yi Xu Yang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期182-194,共13页
Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these met... Staggered-grid finite-difference(SGFD)schemes have been widely used in acoustic wave modeling for geophysical problems.Many improved methods are proposed to enhance the accuracy of numerical modeling.However,these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy(CFL)numbers,making them unstable when modeling with large time sampling intervals or small grid spacings.To solve this problem,we extend a stable SGFD scheme by controlling SGFD dispersion relations and maximizing the maximum CFL numbers.First,to improve modeling stability,we minimize the error between the FD dispersion relation and the exact relation in the given wave-number region,and make the FD dispersion approach a given function outside the given wave-number area,thus breaking the conventional limits of the maximum CFL number.Second,to obtain high modeling accuracy,we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients.In addition,the hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable weighting coefficient for the proposed scheme.Theoretical derivation and numerical modeling demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD scheme when adopting a small maximum effective wavenumber,indicating that the proposed scheme improves stability during the modeling. 展开更多
关键词 acoustic wave Staggered-grid finite-difference(SGFD) modeling Courant-friedrichs-lewy(CFL)number Stability
下载PDF
Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme 被引量:4
2
作者 蔡晓慧 刘洋 +4 位作者 任志明 王建民 陈志德 陈可洋 王成 《Applied Geophysics》 SCIE CSCD 2015年第3期409-420,469,共13页
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a... Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods. 展开更多
关键词 3D acoustic wave equation optimal finite-difference forward modeling reversetime migration
下载PDF
Fine Sand and Clay Sediment Acoustic Properties of the Novel Sediment Sample from the Arabian Sea:Experimental Investigations and Biot−Stoll Model Validation
3
作者 Shahabuddin SHAIKH HUANG Yi-wang +1 位作者 ZHANG Ze-chuan Habib Hussain ZUBERI 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期169-180,共12页
The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean ... The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting. 展开更多
关键词 physical and acoustic characteristics marine sediments sound speed ATTENUATION Biot−Stoll model
下载PDF
3-D acoustic wave equation forward modeling with topography 被引量:6
4
作者 Wang Xiangchun Liu Xuewei 《Applied Geophysics》 SCIE CSCD 2007年第1期8-15,共8页
In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transform... In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties. 展开更多
关键词 acoustic wave equation surface topography FINITE-DIFFERENCE numerical modeling.
下载PDF
Discrete element modeling of acoustic emission in rock fracture 被引量:2
5
作者 Shunying Ji Shaocheng Di 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期46-50,共5页
The acoustic emission (AE) features in rock fracture are simulated numerically with discrete element model (DEM). The specimen is constructed by using spherical particles bonded via the parallel bond model. As a r... The acoustic emission (AE) features in rock fracture are simulated numerically with discrete element model (DEM). The specimen is constructed by using spherical particles bonded via the parallel bond model. As a result of the heterogeneity in rock specimen, the failure criterion of bonded particle is coupled by the shear and tensile strengths, which follow a normal probability distribution. The Kaiser effect is simulated in the fracture process, for a cubic rock specimen under uniaxial compression with a constant rate. The AE number is estimated with breakages of bonded particles using a pair of parameters, in the temporal and spatial scale, respectively. It is found that the AE numbers and the elastic energy release curves coincide. The range for the Kaiser effect from the AE number and the elastic energy release are the same. Furthermore, the frequency-magnitude relation of the AE number shows that the value of B determined with DEM is consistent with the experimental data. 展开更多
关键词 acoustic emission discrete element model failure criteria elastic strain energy parallelbonding
下载PDF
Theoretical modeling of the effects of temperature and moisture content on the acoustic velocity of Pinus resinosa wood 被引量:1
6
作者 Shan Gao Xinmin Tao +1 位作者 Xiping Wang Lihai Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期532-539,共8页
To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical p... To investigate the effects of temperature and moisture content(MC) on acoustic wave velocity(AWV)in wood,the relationships between wood temperature,MC,and AWV were theoretically analyzed.According to the theoretical propagation characteristics of the acoustic waves in the wood mixture and the differences in velocity among various media(including ice,water,pure wood or oven-dried wood),theoretical relationships of temperature,MC,and AWV were established,assuming that the samples in question were composed of a simple mixture of wood and water or of wood and ice.Using the theoretical model,the phase transition of AWV in green wood near the freezing point(as derived from previous experimental results) was plausibly described.By comparative analysis between theoretical and experimental models for American red pine(Pinus resinosa) samples,it was established that the theoretically predicted AWV values matched the experiment results when the temperature of the wood was below the freezing point of water,with an averageprediction error of 1.66%.The theoretically predicted AWV increased quickly in green wood as temperature decreased and changed suddenly near 0 °C,consistent with the experimental observations.The prediction error of the model was relatively large when the temperature of the wood was above the freezing point,probably due to an overestimation of the effect of the liquid water content on the acoustic velocity and the limited variables of the model.The high correlation between the predicted and measured acoustic velocity values in frozen wood samples revealed the mechanisms of temperature,MC,and water status and how these affected the wood(particularly its acoustic velocity below freezing point of water).This result also verified the reliability of a previous experimental model used to adjust for the effect of temperature during field testing of trees. 展开更多
关键词 acoustic velocity WOOD TEMPERATURE Moisture content Theoretical model
下载PDF
Cluster modeling of the short-range correlation of acoustically emitted scattering signals 被引量:1
7
作者 Dongjie Xue Lele Lu +2 位作者 Jie Zhou Lan Lu Yintong Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期575-589,共15页
As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike ... As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike the statistical description of the spatial distribution of randomly generated AE signals,spatial correlation modeling is based mainly on short-range correlation considering the interrelationship of adjacent signals.As a new idea from percolation models,the covering strategy is used to build the most representative cube cluster,which corresponds to the critical scale at peak stress.Its modeling process of critical cube cluster depends strongly on the full connection of the main fracture network,and the corresponding cube for coverage is termed the critical cube.The criticality pertains to not only the transition of local-to-whole connection of the fracture network but also the increasing-to-decreasing transition of the deviatoric stress with an obvious stress drop in the brittle failure of granite.Determining a reasonable critical cube guarantees the best observation scale for investigating the failure process.Besides,the topological connection induces the geometric criticality of three descriptors,namely anisotropy,pore fraction,and specific surface area,which are evaluated separately and effectively.The results show that cluster modeling based on the critical cube is effective and has criticality in both topology and geometry,as well as the triaxial behavior.Furthermore,the critical cube length presents a high confidence probability of being correlated to the mineral particle size.Besides,its pore fraction of cube cluster is influenced strongly by the critical cube length and confining pressure. 展开更多
关键词 acoustic emission Spatial correlation modeling Cover strategy CRITICALITY Critical cube Cluster modeling
下载PDF
Study on Acoustic Modeling in a Mandarin Continuous Speech Recognition 被引量:1
8
作者 PENG Di LIU Gang GUO Jun 《Journal of China University of Mining and Technology》 EI 2007年第1期143-146,共4页
The design of acoustic models is of vital importance to build a reliable connection between acoustic wave-form and linguistic messages in terms of individual speech units. According to the characteristic of Chinese ph... The design of acoustic models is of vital importance to build a reliable connection between acoustic wave-form and linguistic messages in terms of individual speech units. According to the characteristic of Chinese phonemes, the base acoustic phoneme units set is decided and refined and a decision tree based state tying approach is explored. Since one of the advantages of top-down tying method is flexibility in maintaining a balance between model accuracy and complexity, relevant adjustments are conducted, such as the stopping criterion of decision tree node splitting, during which optimal thresholds are captured. Better results are achieved in improving acoustic modeling accuracy as well as minimizing the scale of the model to a trainable extent. 展开更多
关键词 acoustic model base acoustic phoneme units decision tree
下载PDF
Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
9
作者 黄蓓 张艳丽 +1 位作者 章东 龚秀芬 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期378-383,共6页
This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic n... This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic nonlinear response of a free microbubble with that obtained by the Church model. Then this model is used to investigate the effect of the rigid boundary on acoustic scattering signals from microbubble. The results indicate that the resonance frequency decreases while the oscillation amplitude increases as the microbubble approaches the rigid boundary. In addition, the fundamental component of the acoustic scattering signal is enhanced compared with that of the free microbubble. 展开更多
关键词 bound encapsulated microbubble acoustic scattering finite element model
下载PDF
Remodeling of living human nasal cavity under the assistance of acoustic rhinometry technique
10
作者 Jun Zhang 《Journal of Biosciences and Medicines》 2013年第2期28-32,共5页
Acoustic rhinometry could numerically describe up- per airway condition of air draft by drawing a graph plotting the distance from the nostril vs. the cross-sectional area. Some decreases on the graph correspond to th... Acoustic rhinometry could numerically describe up- per airway condition of air draft by drawing a graph plotting the distance from the nostril vs. the cross-sectional area. Some decreases on the graph correspond to the typical anatomic structures of human nasal cavity. The 3-dimensional, computing fluid dynamic model of the same person was developed based on computed tomography scans. The veracity of the CFD model was valued by contrasting the relevant areas of stenosis site between the model and the AR graph. The aim in this study is to make clear how to use an AR to help improve and enrich the CFD model with the information of graph acquired from the measurement. The combination of AR and CT can be used to establish a living human nasal cavity model with higher significant information content. 展开更多
关键词 acoustic RHINOMETRY NASAL Cavity COMPUTED Tomography 3-Dimensional Reconstruction Computing Fluid Dynamic model
下载PDF
Finite Element Analysis in Combination with Perfectly Matched Layer to the Numerical Modeling of Acoustic Devices in Piezoelectric Materials 被引量:1
11
作者 Dbich Karim Sylvain Ballandras +3 位作者 Thierry Laroche Karl Wagner Jean-Michel Brice Xavier Perois 《Applied Mathematics》 2013年第5期64-71,共8页
The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the me... The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the mesh. In fact, these ones do not contribute in practice to the corresponding experimental response. The Perfectly Matched Layer (PML) method, allows to suppress the boundary reflections. In this work, we first demonstrate the basis of PML adapted to FEA formalism. Next, the results of such a method are depicted allowing a discussion on the behavior of finite acoustic resonators. 展开更多
关键词 Finite Element Method Perfectly Matched Layer Surface acoustic Wave Piezoelcetric Numerical modeling
下载PDF
Research and Modeling of Nonlinear Acoustic Processes in a Layered Nonlinear Medium with a Porous Fluid-Saturated Inclusion of a Hierarchical Type
12
作者 Olga Hachay Veniamin Dryagin Andrey Khachay 《Open Journal of Geology》 2019年第9期497-506,共10页
Problem statement: The results of the study of seism acoustic emission arising in a porous two-phase geological environment under acoustic influence are presented. Acoustic emission arising in reservoirs of oil fields... Problem statement: The results of the study of seism acoustic emission arising in a porous two-phase geological environment under acoustic influence are presented. Acoustic emission arising in reservoirs of oil fields using good observations is considered. The regularity of the emission processes of acoustic emission, which manifests itself in the form of discrete spectra of signals similar to oscillations of nonlinearly coupled oscillators, is shown. Spectra have special characteristics for each type of rock. Applied method and design: An algorithm for modeling the process of resonant acoustic response of a porous fluid-saturated reservoir with hierarchical structure and plastic properties on acoustic frequency excitation is developed. That algorithm is developed as an iterative process for the solution integral and integral-differential equations. The frequencies that are parameters of the direct problem are used from the spectra of observed data of acoustic emission in the oil wells. Typical results: For the first time, it had been found the relation between resonant frequencies of the acoustic emission and plastic properties, these values of frequencies had been used in the algorithm of modeling distribution of longitudinal waves in the fluid saturated nonlinear plastic environment. Concluding note (Practical value/implications): The analysis of these emission processes can serve as a source of information about the filtration-capacitive properties of productive reservoirs of a porous type with a hierarchical structure. It is used by practical data of oil fields of Western Siberia. 展开更多
关键词 SEISMIC Emission after acoustic Impact RESERVOIR of HIERARCHICAL Structure with Plastic Properties Algorithm of 2D modeling CONNECTED with Energy Spectrograms
下载PDF
Modeling cell contractility responses to acoustic tweezing cytometry
13
作者 Suyan Zhang Zhenzhen Fan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第2期132-142,共11页
Acoustic tweezing cytometry(ATC)is a recently developed method for cell mechanics regulation.Tar-geted microbubbles,which are attached to integrins and subsequently the actin cytoskeleton,anchor,amplify and transmit t... Acoustic tweezing cytometry(ATC)is a recently developed method for cell mechanics regulation.Tar-geted microbubbles,which are attached to integrins and subsequently the actin cytoskeleton,anchor,amplify and transmit the mechanical energy in an acoustic field inside the cells,eliciting prominent cy-toskeleton contractile force increases in various cell types.We propose that a mechanochemical con-version mechanism is critical for the high efficiency of ATC to activate cell contractility responses.Our models predict key experimental observations.Moreover,we study the influences of ATC parameters(ul-trasound center frequency,pulse repetition frequency,duty cycle,and acoustic pressure),cell areas,the number of ATC stimuli,and extracellular matrix rigidity on cell contractility responses to ATC.The simu-lation results suggest that it is large molecules,rather than small ions,that facilitate global responses to the local ATC stimulation,and the incorporation of visible stress fiber bundles improves the accuracy of modeling. 展开更多
关键词 Cell contractility Cytoskeleton contractile force acoustic tweezing cytometry 2D dynamic modeling
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
14
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-TERM memory recurrentneural network
下载PDF
Acoustic emission activity in directly tensile test on marble specimens and its tensile damage constitutive model 被引量:12
15
作者 Ruifu Yuan Bowen Shi 《International Journal of Coal Science & Technology》 EI 2018年第3期295-304,共10页
For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble speci... For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing. 展开更多
关键词 Marble specimens Direct tensile test acoustic emission Tensile tangent modulus Damage constitutive model
下载PDF
Study of A Geo-Acoustic Model of Gas-Bearing Sediment and Its Application in Sediment with Low Acoustic Veloctiy 被引量:2
16
作者 陶春辉 李红星 +5 位作者 邓显明 周建平 FU Shun-sheng R. H. Wilkens 顾春华 何拥华 《China Ocean Engineering》 SCIE EI 2010年第2期381-390,共10页
A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity ... A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed. 展开更多
关键词 geo-acoustic model sediment with low acoustic velocity gas-bearing in-shu acoustic measurement
下载PDF
Effect of Methane Gas on Acoustic Characteristics of Hydrate-Bearing Sediment–Model Analysis and Experimental Verification 被引量:4
17
作者 BU Qingtao HU Gaowei +5 位作者 LIU Changling DONG Jie XING Tongju SUN Jianye LI Chengfeng MENG Qingguo 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期75-86,共12页
Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weig... Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation.A number of velocity models have been created to study hydrate-bearing sediments,including the BGTL theory,the weighted equation,the Wood equation,the K-T equation,and the effective medium theory.In previous work,we regarded water as the pore fluid,which meant its density and bulk modulus values were those of water.This approach ignores the presence of gas,which results in a biased calculation of the pore fluid's bulk modulus and density.To take into account the effect of gas on the elastic wave velocity,it is necessary to recalculate the bulk modulus and density of an equivalent medium.Thus,a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode.A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory(EMT,which considers gas effects)is more applicable than other models.For hydrate saturations of 10%–30%,the result ranges between EMT-B(homogenous gas distribution)and EMT-B(patchy gas distribution).For hydrate saturations of 30%–60%,the results are similar to those of the EMT-B(homogenous gas distribution)mode,whereas hydrate saturations of 60%–70%yield results similar to those of the EMT-A mode.For hydrate saturations greater than 80%,the experimental results are similar to those of the EMT-B mode.These results have significance for hydrate exploitation in the South China Sea. 展开更多
关键词 natural gas hydrate methane gas acoustic properties wave velocity model simulation experiment
下载PDF
Microstructure Features and the Macroscopic Acoustic Behavior of Gassy Silt in the Yellow River Delta
18
作者 LIU Tao GUO Zhenqi +3 位作者 ZHANG Yan WU Chen LIU Lele DENG Shenggui 《Journal of Ocean University of China》 CAS CSCD 2024年第2期371-382,共12页
The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experime... The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experiments under various vertical loads(four levels),self-designed acoustic macro experiments,and a series of formula revisions to the macro-air-bearing silt sound-velocity prediction model,this paper discusses the macro-and micro-scale features of gassy silts from the Yellow River Delta.The samples consisted of different proportions of silt from the Yellow River Delta and porous media,and they were used to form two types of aerosol silts with initial gas contents of 4.23%and 7.67%.The results show that the air bubble content and external load considerably affect the microstructural parameters and acoustic behavior of gassy silt in the Yellow River Delta.The macroscopic sound velocity showed a linear positive correlation with vertical load and relation to microstructural parameters in varying manners and degrees.Based on the traditional Biot-Stoll acoustic model,the gas-phase medium coefficient was introduced for the proper calculation and prediction of the sound velocity of air-bearing silt.The errors of the overall prediction varied between 5.6%and 9.6%. 展开更多
关键词 gassy silt vertical load microstructure parameters bubble vibration Biot-Stoll acoustic model
下载PDF
Study of acoustic bubble cluster dynamics using a lattice Boltzmann model 被引量:1
19
作者 Mahdi Daemi Mohammad Taeibi-Rahni Hamidreza Massah 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期263-270,共8页
The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past deca... The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster. 展开更多
关键词 multiphase lattice Boltzmann model acoustic field multi-bubble bubble cluster dynamics CAVITATION
下载PDF
Cross-Ice Acoustic Communication:Cascade Acoustic Channel Model and Experimental Results 被引量:2
20
作者 Jingwei Yin Wei Men +1 位作者 Guangping Zhu Xiao Han 《China Communications》 SCIE CSCD 2021年第2期228-240,共13页
Cross-ice acoustic information transmission is an effective means of communication in polar sea areas covered by ice.However,the channel is extremely complicated because of the combined influence of water,ice,and air.... Cross-ice acoustic information transmission is an effective means of communication in polar sea areas covered by ice.However,the channel is extremely complicated because of the combined influence of water,ice,and air.Based on the normalmode theory,this paper establishes a cascade acoustic channel(CAC)model for the transmission of underwater acoustic waves across ice layer.The model can calculate the displacement response of the ice layer’s upper surface by separating the upward waves from normal modes in the water and multiplying it by a transmission coefficient matrix.The relationship between the displacement response of the upper surface of ice layer and the acoustic frequency is calculated by the finite-element method,and the calculation result was consistent with that of the CAC model.To verify the applicability of the model,a cross-ice acoustic communication experiment was conducted in Songhua River in January 2019.Experimental results show the energy of the acoustic signals received by geophones is closely related to sound frequency and crossice acoustic communication is feasible.The result of present research is important for understanding crossice acoustic channel characteristics and developing future cross-ice acoustic communication in polar sea areas. 展开更多
关键词 cross-ice acoustic communication normal mode CAC model transmission coefficient
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部