Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fl...Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.展开更多
A novel micro-emulsion was prepared by mixing an oil-soluble viscosity reducer,which was screened to aim at improving the heavy oil properties of Shengli oilfield with water-soluble surfactant and co-surfactant.The st...A novel micro-emulsion was prepared by mixing an oil-soluble viscosity reducer,which was screened to aim at improving the heavy oil properties of Shengli oilfield with water-soluble surfactant and co-surfactant.The static viscosity reduction and oil washing performance of the micro-emulsion were investigated,and the field application of the microemulsion used as heavy oil displacement agent was also reported.Results showed that the micro-emulsion exhibited excellent viscosity reduction performance for the studied heavy oil samples.When heavy oil was mixed with 0.5%of the micro-emulsion,a stable oil-in-water heavy oil emulsion could be formed.After the content of the micro-emulsion was increased to 3.0%,the oil removing rate reached up to 80%.Field application of the micro-emulsion to the Pai-601-Ping-115 well and the Pai-601-Ping-123 well was shown to be effective by increasing the periodic oil production up to 203 tons.展开更多
Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum tech...Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.展开更多
文摘Development strategy for heavy-oil reservoirs is one of the important research interests in China National Offshore Oil Corp. (CNOOC) that plans a highly effective development for heavy oil fields in multilayered fluvial reservoirs because of their significant influence on marine oil and even on China's petroleum production. The characteristics analysis of multilayered fluvial reservoirs in the heavy oil fields in Bohai Bay indicates that large amounts ofoil were trapped in the channel, point bar and channel bar sands. The reserves distribution of 8 oilfields illustrates that the reserves trapped in the main sands, which is 20%-40% of all of the sand bodies, account for 70%-90% of total reserves of the heavy oil fields. The cumulative production from high productivity wells (50% of the total wells) was 75%-90% of the production of the overall oilfield, while only 3%-10% of the total production was from the low productivity wells (30% of the total wells). And the high productivity wells were drilled in the sands with high reserves abundance. Based on the above information the development strategy was proposed, which includes reserves production planning, selection of well configuration, productivity design, and development modification at different stages.
基金This work was supported by the 13th Fiveyear Plan National Key Project of China(No.2016ZX05011-003-004 and No.2017ZX05049-003-008).
文摘A novel micro-emulsion was prepared by mixing an oil-soluble viscosity reducer,which was screened to aim at improving the heavy oil properties of Shengli oilfield with water-soluble surfactant and co-surfactant.The static viscosity reduction and oil washing performance of the micro-emulsion were investigated,and the field application of the microemulsion used as heavy oil displacement agent was also reported.Results showed that the micro-emulsion exhibited excellent viscosity reduction performance for the studied heavy oil samples.When heavy oil was mixed with 0.5%of the micro-emulsion,a stable oil-in-water heavy oil emulsion could be formed.After the content of the micro-emulsion was increased to 3.0%,the oil removing rate reached up to 80%.Field application of the micro-emulsion to the Pai-601-Ping-115 well and the Pai-601-Ping-123 well was shown to be effective by increasing the periodic oil production up to 203 tons.
文摘Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.