The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc...The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.展开更多
Acid Rock Drainage (ARD) is a well-known problem related to the mining industry due to its hazardous environmental effects. Metal-rich drainage and acid effluent transmitted from mine waste dumps compromise environmen...Acid Rock Drainage (ARD) is a well-known problem related to the mining industry due to its hazardous environmental effects. Metal-rich drainage and acid effluent transmitted from mine waste dumps compromise environmental quality of groundwater and surface water systems destroying aquatic life and increasing human health risks. This study was aimed at assessing the acid and metal drainage potential from the Subriso East Rock Dump (SERD) located in the Wassa East district of Ghana on ground and surface water quality in the catchment using a system of monitoring boreholes, reference boreholes and river samples. Water samples were collected from deep and shallow monitoring boreholes and surface water within the immediate environs of the SERD from August 2012 to February 2013 for laboratory and statistical analysis. Parameters analyzed include sulphate, alkalinity, Arsenic (As), Manganese (Mn), Iron (Fe), Zinc (Zn), Copper (Cu), Cadmium (Cd), Mercury (Hg), Aluminum (Al), Silver (Ag) and lead (Pb) and their concentrations compared with Ghana Standards Authority (GSA) GSB (2009) and WHO (2017) standards. Results indicate that surface and groundwater were not impacted by the SERD possibly because there was no generation of acid or metal-loaded effluent from the SERD into the environment. Physicochemical variables between monitoring boreholes did not differ significantly from conditions in the reference boreholes. Similarly, comparison of upstream and downstream river conditions did not yield any statistical significance (p > 0.05). Mn and Fe concentrations were above the WHO (2017)/GSB (2009) standards. Heavy metal concentrations in surface and groundwater were below detection limits except manganese and iron whose concentrations exceeded the recommended guidelines. No significant environmental impacts exist that could be attributed to the waste rock dump and may be as a result of engineering designs and mechanisms which prevent acid generated water from reaching the external environment. Furthermore, the geology of the study area potentially could be slightly inert having the potential to generate ARD under appropriate conditions. Again, the young age of the waste rock dump is a factor that may contribute to ARD generation under appropriate condition. Routine monitoring of groundwater and surface water sources is required to determine future acid generation of the SERD and its environmental impacts. The results of this study will assist decision makers and environmental managers to plan effectively to mitigate future impacts as mining waste rock dumps are known to increase in acid generation potential with age.展开更多
Berau Basin, a sub-basin of Tarakan Basin, had been developed during Eocene to Miocene period. Rocks in Berau Basin consist of sedimentary, volcanic and igneous rocks aged from Pre-tertiary until Quaternary epoch. The...Berau Basin, a sub-basin of Tarakan Basin, had been developed during Eocene to Miocene period. Rocks in Berau Basin consist of sedimentary, volcanic and igneous rocks aged from Pre-tertiary until Quaternary epoch. The youngest identified rock formation was alluvial deposit consists of mud, silt, sand, gravel and swamp with brown to dark color. This youngest rock formation is relatively weak geological condition and can cause problems in the coal mining operation. PT Berau Coal as one of the coal mining companies in Berau Basin area had experienced some problems related to the occurrence of alluvial deposit. A large failure has occurred at one of its out pit dumping?area which lies over the swamp material. The failure caused a higher operating cost since it made that the distance for waste rock dumping became to be farther than the designated area. Therefore, in order to prevent similar failure occurring at dumping area which lies above swamp material, an improvement of dumping site stability on weak geological condition has to be needed. The proposed method for improving the stability of out pit dumping area in weak geological condition is to construct the compacted layer of waste rock before the out pit dumping area construction. Based on experimental results, a minimum of 40 kPa pressure is needed to give a proper compaction to the waste rock. The result of numerical analysis by Finite Element Method (FEM) shows that construction of compacted layer on the base of out pit dumping area can improve its stability.展开更多
基金Projects(51209118,71373245)supported by the National Natural Science Foundation of ChinaProject(2014JBKY01)supported by the Fundamental Research Funds for CASST,China
文摘The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.
文摘Acid Rock Drainage (ARD) is a well-known problem related to the mining industry due to its hazardous environmental effects. Metal-rich drainage and acid effluent transmitted from mine waste dumps compromise environmental quality of groundwater and surface water systems destroying aquatic life and increasing human health risks. This study was aimed at assessing the acid and metal drainage potential from the Subriso East Rock Dump (SERD) located in the Wassa East district of Ghana on ground and surface water quality in the catchment using a system of monitoring boreholes, reference boreholes and river samples. Water samples were collected from deep and shallow monitoring boreholes and surface water within the immediate environs of the SERD from August 2012 to February 2013 for laboratory and statistical analysis. Parameters analyzed include sulphate, alkalinity, Arsenic (As), Manganese (Mn), Iron (Fe), Zinc (Zn), Copper (Cu), Cadmium (Cd), Mercury (Hg), Aluminum (Al), Silver (Ag) and lead (Pb) and their concentrations compared with Ghana Standards Authority (GSA) GSB (2009) and WHO (2017) standards. Results indicate that surface and groundwater were not impacted by the SERD possibly because there was no generation of acid or metal-loaded effluent from the SERD into the environment. Physicochemical variables between monitoring boreholes did not differ significantly from conditions in the reference boreholes. Similarly, comparison of upstream and downstream river conditions did not yield any statistical significance (p > 0.05). Mn and Fe concentrations were above the WHO (2017)/GSB (2009) standards. Heavy metal concentrations in surface and groundwater were below detection limits except manganese and iron whose concentrations exceeded the recommended guidelines. No significant environmental impacts exist that could be attributed to the waste rock dump and may be as a result of engineering designs and mechanisms which prevent acid generated water from reaching the external environment. Furthermore, the geology of the study area potentially could be slightly inert having the potential to generate ARD under appropriate conditions. Again, the young age of the waste rock dump is a factor that may contribute to ARD generation under appropriate condition. Routine monitoring of groundwater and surface water sources is required to determine future acid generation of the SERD and its environmental impacts. The results of this study will assist decision makers and environmental managers to plan effectively to mitigate future impacts as mining waste rock dumps are known to increase in acid generation potential with age.
文摘Berau Basin, a sub-basin of Tarakan Basin, had been developed during Eocene to Miocene period. Rocks in Berau Basin consist of sedimentary, volcanic and igneous rocks aged from Pre-tertiary until Quaternary epoch. The youngest identified rock formation was alluvial deposit consists of mud, silt, sand, gravel and swamp with brown to dark color. This youngest rock formation is relatively weak geological condition and can cause problems in the coal mining operation. PT Berau Coal as one of the coal mining companies in Berau Basin area had experienced some problems related to the occurrence of alluvial deposit. A large failure has occurred at one of its out pit dumping?area which lies over the swamp material. The failure caused a higher operating cost since it made that the distance for waste rock dumping became to be farther than the designated area. Therefore, in order to prevent similar failure occurring at dumping area which lies above swamp material, an improvement of dumping site stability on weak geological condition has to be needed. The proposed method for improving the stability of out pit dumping area in weak geological condition is to construct the compacted layer of waste rock before the out pit dumping area construction. Based on experimental results, a minimum of 40 kPa pressure is needed to give a proper compaction to the waste rock. The result of numerical analysis by Finite Element Method (FEM) shows that construction of compacted layer on the base of out pit dumping area can improve its stability.