期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Isothermal Crystallization Behavior of Biodegradable Poly (butylene succinate-co-terephthalate) (PBST) Copolyesters at High Undercoolings
1
作者 许新建 李发学 +1 位作者 罗胜利 俞建勇 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期405-407,共3页
Poly (butylene succinatc-co-terephthalate) (PBST) copolycsters were prepared by polycondensation. The crystallization behavior of the as-prepared copolyesters was investigated by depolarized light intensity (DLI... Poly (butylene succinatc-co-terephthalate) (PBST) copolycsters were prepared by polycondensation. The crystallization behavior of the as-prepared copolyesters was investigated by depolarized light intensity (DLI) at high undercoolings. According to Avrami equation, the exponent n, independent of the crystallization temperature, is at a range of 2. 5 to 3. 4, which probably corresponds to the heterogeneous mucleation and a 3-dimensional spherulitic growth. The maximum crystallization rate, very useful to polymer processing, was found at about 90℃ based on the half-crystallization time t1/2 analysis. 展开更多
关键词 PBST copol yesters DLI isothermal crystallization high undercoolings
下载PDF
Refinement Mechanism of Microstructure of Undercooled Nickel Based Alloys
2
作者 杜文华 HOU Kai +6 位作者 XU Xuguang Ismal Saad Willey Liew Yun Hsien AN Hongen Nancy Julius Siambun Bih-Lii Chuab 王洪福 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1041-1047,共7页
Through the use of purification and recirculation superheating techniques on molten glass,the Ni65Cu33Co2 alloy was successfully undercooled to a maximum temperature of 292 K.High-speed photography was employed to cap... Through the use of purification and recirculation superheating techniques on molten glass,the Ni65Cu33Co2 alloy was successfully undercooled to a maximum temperature of 292 K.High-speed photography was employed to capture the process of interface migration of the alloy liquid,allowing for an analysis of the relationship between the morphological characteristics of the alloy liquid solidification front and the degree of undercooling.Additionally,the microstructure of the alloy was examined using metallographic microscopy,leading to a systematic study of the microscopic morphological characteristics and evolution laws of the refined structure during rapid solidification.The research reveals that the grain refining mechanism of the Ni-Cu-Co ternary alloy is consistent with that of the binary alloy(Ni-Cu).Specifically,under low undercooling conditions,intense dendritic remelting was found to cause grain refinement,while under high undercooling conditions,recrystallization driven by accumulated stress and plastic strain resulting from the interaction between the liquid flow and the primary dendrites caused by rapid solidification was identified as the main factor contributing to grain refinement.Furthermore,the study highlights the significant role of the Co element in influencing the solidification rate and reheat effect of the alloy.The addition of Co was also found to facilitate the formation of non-segregated solidification structure,indicating its importance in the overall solidification process. 展开更多
关键词 grain refinement RECALESCENCE RECRYSTALLIZATION UNDERCOOLING
下载PDF
Mechanism in Solidification of a Ternary Nickel Based Alloy
3
作者 田密 成博 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1018-1024,共7页
The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture... The experiment employed the use of melt purification and cyclic superheating technique to achieve maximum undercooling of Ni65Cu31Co4 alloy at 300K.Simultaneously,high-speed photography techniques were used to capture the process of alloy liquid phase interface migration,and analyzed the relationship between the shape characteristics of the front end of alloy solidification and undercooling.The microstructure of the alloy was observed through metallographic microscopy,and the micro-morphological characteristics and evolution of the rapidly solidified microstructure were systematically studied.It is found that the grain refinement mechanism of Ni-Cu-Co ternary alloy is similar to that of Ni-Cu binary alloy.Grain refinement at low undercooling is caused by intense dendritic remelting,while grain refinement at high undercooling is attributed to recrystallization,driven by the stress and plastic strain accumulated from the interaction of liquid flow and primary dendrites caused by rapid solidification.It also shows that the addition of the third element Co plays a significant role in solidification rate and re-ignition effect. 展开更多
关键词 UNDERCOOLING RECALESCENCE Ni-Cu-Co ternary alloy grain refinement RECRYSTALLIZATION
下载PDF
Evading strength−ductility trade-off of GH605 alloy using magnetic field-assisted undercooling treatment
4
作者 Yi-xuan HE Fan BU +6 位作者 Zhang-chi BIAN Ming-xiu XIANG Meng-meng ZHOU Xu-dong LIU Lei ZHU Jun WANG Jin-shan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2575-2588,共14页
Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-... Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-off dilemma in GH605 superalloy is successfully overcome.The UMF treatment can effectively refine the grains and increase the solid solubility,leading to the high yield strength.The main deformation mechanism in the as-forged alloy is dislocation slipping.By contrast,multiple deformation mechanisms,including stacking faults,twining,dislocation slipping,and their strong interactions are activated in the UMF-treated sample during compression deformation,which enhances the strength and ductility simultaneously.In addition,the precipitation of hard Laves phases along the grain boundaries can be obtained after UMF treatment,hindering crack propagation during compression deformation. 展开更多
关键词 undercooling treatment magnetic field GH605 alloy strengthening mechanisms
下载PDF
Preparation of Laser Cladding Coating Undercooling Cu-based Alloy and Co on Non-equilibrium Solidification Structure
5
作者 田徐铭 CAO Shichao +3 位作者 HOU Kai HOU Xiaopeng WANG Hongfu 张煜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期463-472,共10页
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ... The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating. 展开更多
关键词 non-equilibrium solidification structure UNDERCOOLING RECRYSTALLIZATION laser cladding coating
下载PDF
Effective inhibition of anomalous grain coarsening in cast AZ91 alloys during fast cooling via nanoparticle addition 被引量:1
6
作者 Haonan Li Kui Wang +3 位作者 Gaopeng Xu Haiyan Jiang Qudong Wang Yingxin Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4575-4588,共14页
In this work, the effects of Ti CN and γ-Al_(2)O_(3) nanoparticle(NP) addition on the microstructural evolution of cast AZ91 alloys at the cooling rate ranging from 15 to 120 K/s have been systematically investigated... In this work, the effects of Ti CN and γ-Al_(2)O_(3) nanoparticle(NP) addition on the microstructural evolution of cast AZ91 alloys at the cooling rate ranging from 15 to 120 K/s have been systematically investigated. Experimental results reveal that grain coarsening occurs in cast AZ91 alloys when the cooling rate exceeds 90 K/s, while it can be effectively inhibited upon addition of NPs. The marked inhibition effect may originate from the formation of Ti CN or γ-Al_(2)O_(3) NP-induced undercooling zone ahead of solid/liquid(S/L) front of α-Mg, which not only can restrict grain growth effectively, but also can reactivate the native nucleants that are inactive in AZ91 melts to participate in nucleation events. And if possessing high nucleation potency, NPs can also promote further nucleation events and lead to significant grain refinement. An analytical model has been established to quantitatively account for the restriction effect of NPs on grain growth. The present work may shed a new light on the grain coarsening of cast alloys during fast cooling and provide an effective approach to circumvent it. 展开更多
关键词 Grain coarsening NANOPARTICLES Undercooling zone Fast cooling
下载PDF
Effect of Co on Microstructure Transformation and Refinement Mechanism of Undercooled Cu-Ni Alloy
7
作者 Willey Liew Yun Hsien 安洪恩 +1 位作者 Nancy Julius Siambun Bih-Lii Chuab 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期877-884,共8页
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o... Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(DT)was systematically studied.It was found that the two alloys experienced the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The experimental results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,whereas,the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscope(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it can be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization. 展开更多
关键词 rapid solidification UNDERCOOLING MICROSTRUCTURE refinement structure
下载PDF
Microstructure Transformation and Refinement Mechanism of Undercooled Cu-Ni-Co Alloy Based on Simulation of Critical Cutting Speed in Ultrasonic Machining
8
作者 HE Xiaoyu HOU Kai +2 位作者 XU Xuguang TANG Cheng ZHU Xijing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1472-1483,共12页
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o... Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality. 展开更多
关键词 rapid solidification UNDERCOOLING microstructure refinement structure ultrasonic elliptical vibration turning cutting speed finite element analysis
下载PDF
A new step-cooling process for strength and toughness matching control of vanadium-containing railway wheels:effect of intragranular ferrite
9
作者 YAO Sancheng LIU Xuehua +3 位作者 ZHAO Hai JIANG Bo CHEN Gang XU Kang 《Baosteel Technical Research》 CAS 2023年第3期40-48,共9页
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ... To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged. 展开更多
关键词 vanadium microalloyed railway wheel strength and toughness match low undercooling in austenite intragranular ferrite second phase step-cooling process
下载PDF
Solidification process and microstructure evolution of bulk undercooled Co-Sn alloys 被引量:5
10
作者 刘礼 马晓丽 +3 位作者 黄起森 李金富 程先华 周尧和 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期289-293,共5页
A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by ... A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys. 展开更多
关键词 Co-Sn alloy UNDERCOOLING RECALESCENCE coupled growth zone SOLIDIFICATION microstructure evolution
下载PDF
Effect of back diffusion on overall solidification kinetics of undercooled single-phase solid-solution alloys 被引量:1
11
作者 王海丰 刘峰 +1 位作者 王慷 翟海民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期642-646,共5页
Departing from the volume-averaging method,an overall solidification kinetic model for undercooled single-phase solid-solution alloys was developed to study the effect of back diffusion on the solidification kinetics.... Departing from the volume-averaging method,an overall solidification kinetic model for undercooled single-phase solid-solution alloys was developed to study the effect of back diffusion on the solidification kinetics.Application to rapid solidification of undercooled Ni-15%Cu(mole fraction) alloy shows that back diffusion effect has significant influence on the solidification ending temperature but possesses almost no effect on the volume fraction solidified during recalescence.Inconsistent with the widely accepted viewpoint of Herlach,solidification ends at a temperature between the predictions of Lever rule and Scheil's equation,and the exact value is determined by the effect of back diffusion,the initial undercooling and the cooling rate. 展开更多
关键词 Ni-Cu alloy rapid solidification diffusion UNDERCOOLING
下载PDF
Ni-10%Fe合金的深过冷与快速枝晶生长
12
作者 魏炳波 杨澍 《西北工业大学学报》 EI CAS CSCD 北大核心 1994年第2期334-337,共4页
Ni-10%Fe合金的深过冷与快速枝晶生长魏炳波,杨澍,D.M.Herlach聪胃深过冷是指通过去除异质晶核可以使液态金属冷却至远低于其平衡凝固点的温度下而不发生结晶.一旦深过冷熔体中发生晶体形核,晶核的生长速度可以... Ni-10%Fe合金的深过冷与快速枝晶生长魏炳波,杨澍,D.M.Herlach聪胃深过冷是指通过去除异质晶核可以使液态金属冷却至远低于其平衡凝固点的温度下而不发生结晶.一旦深过冷熔体中发生晶体形核,晶核的生长速度可以不受外部冷却速度控制.因此,深过冷... 展开更多
关键词 UNDERCOOLING liquid metals dendrite growth rapid solidification
下载PDF
Relationship between microstructure and mechanical properties of undercooled K4169 superalloy 被引量:3
13
作者 张可人 谢发勤 +1 位作者 胡锐 吴向清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1885-1891,共7页
Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified sta... Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified state were tested. Microstructures and phases composition in undercooled bulk K4169 superalloy were identified by transmission electron microscope (TEM), scanning electron microscope (SEM) and optical microscopy (OM). The morphology of dendrites, grain size and intergranular phase all change with the increased undercooling. Meanwhile, the relationship between microstructure of undercooled K4169 superalloy and tensile properties was investigated. The experimental results show that the uniform distribution of Laves phase and the decrease of grain size and intergranular phase content are favorable for the improvement of mechanical properties. The maximum tensile strength and elongation obtained at undercooling of 232 K are 932.2 MPa and 6.5%, respectively. 展开更多
关键词 K4169 superalloy UNDERCOOLING Laves phase mechanical properties MICROSTRUCTURES
下载PDF
Microstructure and microtexture evolution of undercooled Ni-15%Cu alloy 被引量:2
14
作者 李圣 王海丰 刘峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3265-3270,共6页
Rapid solidification of undercooled Ni-15%Cu (mole fraction) alloy was studied using glass fluxing and cyclic superheating. To show the effect of cooling history on the microstrucyure and microtexture evolution, the... Rapid solidification of undercooled Ni-15%Cu (mole fraction) alloy was studied using glass fluxing and cyclic superheating. To show the effect of cooling history on the microstrucyure and microtexture evolution, the as-solidified samples were either cooled naturally or quenched into water after recalescence. At low undercooling, grain-refined microstructure has a random texture and a highly oriented texture without annealing twins for the case of naturally cooling and quenching, respectively. At high undercooling, a fully random texture as well as a number of annealing twins are observed, and recrystallization and grain growth independently happen on the cooling history. Fluid flow and recrystallization play an important role in the microtexture formation for grain refinement at both low and high undercooling. 展开更多
关键词 solidification UNDERCOOLING grain refinement MICROTEXTURE Ni-Cu alloy
下载PDF
Stability of remelting and solidification interfaces of triple-phase region during peritectic reaction at lower speed 被引量:1
15
作者 王书杰 王亮 +4 位作者 骆良顺 苏彦庆 董福宇 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1951-1958,共8页
Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during per... Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion. 展开更多
关键词 peritectic reaction Cu-Ge alloys directional solidification microstructure constitutional undercooling
下载PDF
Abnormal resistivity and viscosity behavior in Sb-rich Pb-Sb melts 被引量:1
16
作者 郭风祥 王薇 +2 位作者 杨海龙 秦敬玉 田学雷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3113-3119,共7页
Electrical resistivity and viscosity of Pb–Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates fro... Electrical resistivity and viscosity of Pb–Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates from linear dependence during cooling. At 663 °C, different trends in isothermal behavior between experimental and theoretical resistivities, are interpreted as the existence of Peierls distortion in Sb-rich melts. In Pb30Sb70 and Pb20Sb80 melts, abnormal viscosity results verify the existence of abnormal structure transition, which is attributed to the formation of large Sb clusters with Peierls distortion. In undercooled liquid Pb20Sb80, minute resistivity coefficient and quadratic resistivity behavior are interpreted as the rapid increase of cluster size of Sb clusters with Peierls distortion, which provides preferential nucleation sites for higher structure similarity to the crystalline and lower liquid–solid interfacial energy. 展开更多
关键词 electrical resistivity VISCOSITY Peierls distortion undercooled liquid Pb–Sb alloys
下载PDF
STRUCTURE FORMATION OF UNDERCOOLED Fe-30Ni ALLOY 被引量:10
17
作者 J.F. Li, J.G. Li, X.P. Zhang and Y.H. Zhou (School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200030, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1029-1033,共5页
Bulk Fe-30Ni alloy melt was nudercooled up to 337K by combining the glass fluxing technique with superheating-cooling cycle. Grain refinement at low undercoolings was observed in the experiment in addition to that at ... Bulk Fe-30Ni alloy melt was nudercooled up to 337K by combining the glass fluxing technique with superheating-cooling cycle. Grain refinement at low undercoolings was observed in the experiment in addition to that at high undercoolings. The current grain refinement mechanisms were examined, and it is concluded that the refined gains are all developed from dendrites, however the grain refinement at low undercoolings is due to chemical superheating, while that at high undercoolings due to rapid solidification contruction. 展开更多
关键词 Fe-Ni alloy UNDERCOOLING solidification structure
下载PDF
Undercooling and Solidification of Sn-Pb Alloy Droplets Prepared by Uniform Droplet Spray 被引量:6
18
作者 吴萍 陈新亮 +4 位作者 姜恩永 赵慈 杜洪明 田雅丽 ANDO Teiichi 《Transactions of Tianjin University》 EI CAS 2003年第2期89-92,共4页
The undercooling and solidification of 150 μm and 185 μm droplets of Sn 5%Pb alloy prepared by the uniform droplet spray (UDS) process have been investigated. The enthalpy of the droplet has been measured by non adi... The undercooling and solidification of 150 μm and 185 μm droplets of Sn 5%Pb alloy prepared by the uniform droplet spray (UDS) process have been investigated. The enthalpy of the droplet has been measured by non adiabatic calorimetric method as a function of the flight distance. A droplet solidification simulation model has been used to compare with the experimental data. The results show that the enthalpy released by the droplets in the calorimeter is 11.88 J/g and 22.29 J/g less than the simulated values up to a certain flight distance at 0.485 m and 0.460 m for 150 μm and 185 μm droplets respectively, but agrees with the expected values at larger distance. The nucleation of the droplets takes place at the distance where the experimental and simulated enthalpy values agree. The droplets quenched before nucleation solidify into metastable supersaturated solid solution and have large undercooling. The formation of the metastable structure in the droplets has been verified metallographically and by calculations based on a thermodynamic model. 展开更多
关键词 UNDERCOOLING Sn Pb alloy DROPLET SOLIDIFICATION
下载PDF
Liquid phase separation and subsequent dendritic solidification of ternary Fe_(35)Cu_(35)Si_(30) alloy
19
作者 罗盛宝 王伟丽 +1 位作者 夏瑱超 魏炳波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2762-2769,共8页
Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metasta... Liquid Fe35Cu35Si30alloy has achievedthemaximum undercooling of 328 K (0.24TL) with glass fluxing method, and it displayed triple solidification mechanisms. A critical undercooling of 24 K was determined for metastable liquid phase separation. At lower undercoolings,α-Fe phase was the primary phase and the solidification microstructure appeared as homogeneous well-defined dendrites. When the undercooling exceeded 24 K, the sample segregated into Fe-rich and Cu-rich zones. In the Fe-rich zone, FeSi intermetallic compound was the primary phase within the undercooling regime below 230 K, while Fe5Si3intermetallic compound replaced FeSi phase as the primary phase at larger undercoolings. The growth velocity of FeSi phase increased whereas that ofFe5Si3 phase decreased with increasing undercooling. For the Cu-rich zone, FeSi intermetallic compound was always the primary phase. Energy-dispersive spectrometry analyses showed that the average compositions of separated zones have deviated substantially from the original alloycomposition. 展开更多
关键词 UNDERCOOLING phase separation dendritic growth rapid solidification solute distribution
下载PDF
DEFORMATION ENHANCED FERRITE TRANSFORMATION IN PLAIN LOW CARBON STEEL 被引量:7
20
作者 Z.Q. Sun, W Y. Yang, A.M. Hu and P. Yang (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China) (School of Material Science and Engineering, University of Science and Technology Beijin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第2期115-121,共7页
The microstructure evolution during deformation enhanced transformation of undercooled austenite of a plain low carbon steel has been investigated by means of hot compression simulation experiment under various condit... The microstructure evolution during deformation enhanced transformation of undercooled austenite of a plain low carbon steel has been investigated by means of hot compression simulation experiment under various conditions of strain rate, deformation temperature and strain. The effect of austenite grain size on the strain enhanced ferrite transformation has been studied. The ferrite dynamic recrystallization involved in successive hot deformation has been explored. 展开更多
关键词 deformation enhanced transformation undercooled austenite.plain low carbon steel microstructure refinement
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部