As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature i...This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.展开更多
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ...Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.展开更多
Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not al...Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.展开更多
Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific rese...Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific research innovation ability of nursing undergraduates based on “3332”. Methods: Three course learning modules are constructed: stage-based course learning module, systematic project practice training module and comprehensive practice training module. A practical training platform for scientific research innovation projects is built, and undergraduate scientific research innovation ability training is carried out from both in-class and out-of-class lines. Results: Since 2017, the students have obtained 7 national innovation and entrepreneurship training programs, 52 university-level undergraduate scientific research projects, published more than 10 academic papers, and obtained 2 patent authorization. Conclusions: The training system of scientific research innovation ability of nursing undergraduates based on “3332” is conducive to the development of scientific research innovation ability of nursing students, and to cultivate nursing talents who can adapt to the development of the new era and have better post competence.展开更多
Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often proh...Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often prohibitively expensive,resulting in a lack of observatories in many regions within a country.Consequently,a significant problem arises where not every region receives the same level of air quality information.This disparity occurs because some locations have to rely on information from observatories located far away from their regions,even if they may be the closest available options.To address this challenge,a novel approach that leverages machine learning and deep learning techniques to forecast fine dust concentrations was proposed.Specifically,continuous location features in the form of latitude and longitude values were incorporated into our models.By utilizing a comprehensive dataset comprising weather conditions,air quality measurements,and location properties,various machine learning models,including Random Forest Regression,XGBoost Regression,AdaBoost Regression,and a deep learning model known as Long Short-Term Memory(LSTM)were trained.Our experimental results demonstrated that the LSTM model outperforms the other models,achieving the best score with a root mean squared error of 23.48 in predicting fine dust(PM10)concentrations on an hourly basis.Furthermore,the fact that incorporating location properties,such as longitude and latitude values,enhances the overall quality of the regression models was discovered.Additionally,the implications and contributions of our research were discussed.By implementing our approach,the cost associated with relying solely on existing observatories can be substantially reduced.This reduction in costs can pave the way for economically efficient fine dust observation systems,ensuring more widespread and accurate air quality monitoring across different regions.展开更多
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep...Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.展开更多
With the development of society,more and more cities are participating in the initiative to build learning cities.Constructing an evaluation indicator system for learning cities to monitor the progress and promote the...With the development of society,more and more cities are participating in the initiative to build learning cities.Constructing an evaluation indicator system for learning cities to monitor the progress and promote their growth has become increasingly important.This paper analyzes the preliminary framework of the UNESCO Global Learning City Index and R3L+Quality Framework.The comparison is made from the aspects of design philosophy,criteria of indicator,and the cycle of evaluation process.The findings suggest that the construction of an evaluation indicator system should be focused more on the diversity of learning city development,the construction of an evaluation process cycle,and the significance of building cooperative networks.展开更多
Objective:This study aimed to determine the relationships between e-learning quality,student satisfaction,and learning outcomes and the mediating effect of student satisfaction.Methods:A cross-sectional quantitative c...Objective:This study aimed to determine the relationships between e-learning quality,student satisfaction,and learning outcomes and the mediating effect of student satisfaction.Methods:A cross-sectional quantitative correlational study using a predictive design and multivariate analysis method was employed in this study.A sample of 241 nursing students were recruited through an online survey based on a stratified random sampling technique.The variance-based Par tial Least Squares Structural Modeling analysis method was used to test the possible relationship and mediating effect among the variables.Results:The findings revealed statistical y significant relationships between e-learning quality,student satisfaction,and learning outcomes.A mediating effect of 37.2%is predicted for e-learning quality on learning outcomes through student satisfaction.Conclusions:This study emphasizes the learning needs of working nurses and the impact on their learning outcomes in e-learning nursing undergraduate programs.Advances in e-learning education have assisted nurses to be more self-sufficient in their pursuit of lifelong learning.展开更多
A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as poll...A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as polluted classes are uncommon.Consequently,the limited availability of minority outcomes lowers the classifier’s overall reliability.This study assesses the capability of machine learning(ML)algorithms in tackling imbalanced water quality data based on the metrics of precision,recall,and F1 score.It intends to balance the misled accuracy towards the majority of data.Hence,10 ML algorithms of its performance are compared.The classifiers included are AdaBoost,SupportVector Machine,Linear Discriminant Analysis,k-Nearest Neighbors,Naive Bayes,Decision Trees,Random Forest,Extra Trees,Bagging,and the Multilayer Perceptron.This study also uses the Easy Ensemble Classifier,Balanced Bagging,andRUSBoost algorithm to evaluatemulti-class imbalanced learning methods.The comparison results revealed that a highaccuracy machine learning model is not always good in recall and sensitivity.This paper’s stacked ensemble deep learning(SE-DL)generalization model effectively classifies the water quality index(WQI)based on 23 input variables.The proposed algorithm achieved a remarkable average of 95.69%,94.96%,92.92%,and 93.88%for accuracy,precision,recall,and F1 score,respectively.In addition,the proposed model is compared against two state-of-the-art classifiers,the XGBoost(eXtreme Gradient Boosting)and Light Gradient Boosting Machine,where performance metrics of balanced accuracy and g-mean are included.The experimental setup concluded XGBoost with a higher balanced accuracy and G-mean.However,the SE-DL model has a better and more balanced performance in the F1 score.The SE-DL model aligns with the goal of this study to ensure the balance between accuracy and completeness for each water quality class.The proposed algorithm is also capable of higher efficiency at a lower computational time against using the standard SyntheticMinority Oversampling Technique(SMOTE)approach to imbalanced datasets.展开更多
Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services...Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services through different applications.It is an extreme challenge to monitor disabled people from remote locations.It is because day-to-day events like falls heavily result in accidents.For a person with disabilities,a fall event is an important cause of mortality and post-traumatic complications.Therefore,detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival rate.The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-DrivenAutomated Fall Detection(WOADTL-AFD)technique to improve the Quality of Life for persons with disabilities.The primary aim of the presented WOADTL-AFD technique is to identify and classify the fall events to help disabled individuals.To attain this,the proposed WOADTL-AFDmodel initially uses amodified SqueezeNet feature extractor which proficiently extracts the feature vectors.In addition,the WOADTLAFD technique classifies the fall events using an extreme Gradient Boosting(XGBoost)classifier.In the presented WOADTL-AFD technique,the WOA approach is used to fine-tune the hyperparameters involved in the modified SqueezeNet model.The proposedWOADTL-AFD technique was experimentally validated using the benchmark datasets,and the results confirmed the superior performance of the proposedWOADTL-AFD method compared to other recent approaches.展开更多
Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount ...Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount of nutrients that the soil require for proper yield.In present decade,the application of deep learning models in many fields of research has created greater impact.The increasing soil data availability of soil data there is a greater demand for the remotely avail open source model,leads to the incorporation of deep learning method to predict the soil quality.With that concern,this paper proposes a novel model called Improved Soil Quality Prediction Model using Deep Learning(ISQP-DL).The work considers the chemical,physical and biological factors of soil in particular area to estimate the soil quality.Firstly,pH rating of soil samples has been collected from the soil testing laboratory from which the acidic range has been categorized through soil test and the same data has been taken as input to the Deep Neural Network Regression(DNNR)model.Secondly,soil nutrient data has been given as second input to the DNNR model.By utilizing this data set,the DNNR method is used to evaluate the fertility rate by which the soil quality has been estimated.For training and testing,the model uses Deep Neural Network Regression(DNNR),by utilizing the dataset.The results show that the proposed model is effective for SQP(Soil Quality Prediction Model)with efficient good fitting and generality is enhanced with input features with higher rate of classification accuracy.The results show that the proposed model achieves 96.7%of accuracy rate compared with existing models.展开更多
Recommending high-quality news to users is vital in improving user stickiness and news platforms’reputation.However,existing news quality evaluation methods,such as clickbait detection and popularity prediction,are c...Recommending high-quality news to users is vital in improving user stickiness and news platforms’reputation.However,existing news quality evaluation methods,such as clickbait detection and popularity prediction,are challenging to reflect news quality comprehensively and concisely.This paper defines news quality as the ability of news articles to elicit clicks and comments from users,which represents whether the news article can attract widespread attention and discussion.Based on the above definition,this paper first presents a straightforward method to measure news quality based on the comments and clicks of news and defines four news quality indicators.Then,the dataset can be labeled automatically by the method.Next,this paper proposes a deep learning model that integrates explicit and implicit news information for news quality evaluation(EINQ).The explicit information includes the headline,source,and publishing time of the news,which attracts users to click.The implicit information refers to the news article’s content which attracts users to comment.The implicit and explicit information affect users’click and comment behavior differently.For modeling explicit information,the typical convolution neural network(CNN)is used to get news headline semantic representation.For modeling implicit information,a hierarchical attention network(HAN)is exploited to extract news content semantic representation while using the latent Dirichlet allocation(LDA)model to get the subject distribution of news as a semantic supplement.Considering the different roles of explicit and implicit information for quality evaluation,the EINQ exploits an attention layer to fuse them dynamically.The proposed model yields the Accuracy of 82.31%and the F-Score of 80.51%on the real-world dataset from Toutiao,which shows the effectiveness of explicit and implicit information dynamic fusion and demonstrates performance improvements over a variety of baseline models in news quality evaluation.This work provides empirical evidence for explicit and implicit factors in news quality evaluation and a new idea for news quality evaluation.展开更多
Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for rep...Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.展开更多
Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursi...Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursing undergraduates.Methods: A total of 500 nursing undergraduates were investigated in Tianjin, with the Chinese version of SDLR scale, learning attitude questionnaire of nursing college students, academic self-efficacy scale, and the general information questionnaire.Result: The score of SDLR was 149.99±15.73. Multiple stepwise regressions indicated that academic self-efficacy, learning attitude, attitudes to major of nursing, and level of learning difficulties were major influential factors and explained 48.1% of the variance in SDLR of nursing interns.Conclusions: The score of SDLR of nursing undergraduates is not promising. It is imperative to correct students' learning attitude, improve self-efficacy, and adopt appropriate teaching model to improve SDLR.展开更多
This paper attempts to investigate the feasibility and learning effects of English fragmented learning via mobile devices.Questionnaires and interviews were employed to do the survey on 157 undergraduates from 24 univ...This paper attempts to investigate the feasibility and learning effects of English fragmented learning via mobile devices.Questionnaires and interviews were employed to do the survey on 157 undergraduates from 24 universities in China.The research findings reveal that English fragmented learning via mobile devices has some positive effects on the improvement of learners’knowledge and learning ability.In addition,there have been a certain number of useful learning resources and platforms with diversified features.The study has the implications that fragmented mobile learning is feasible and can be popularized in English learning.展开更多
Objective:To explore the influence of blending learning on the critical thinking disposition among undergraduates.Methods:Two undergraduate classes majoring in Applied Psychology with similar level of critical thinkin...Objective:To explore the influence of blending learning on the critical thinking disposition among undergraduates.Methods:Two undergraduate classes majoring in Applied Psychology with similar level of critical thinking disposition were selected as the research subjects.Class A(106 students)was the experimental class,and class B(131 students)was the control class.During the research period of one semester(four months),the following measures were implemented for the two classes.The control class studied Developmental Psychology under the conventional teaching methods and procedures,while the experimental class studied Developmental Psychology according to the requirements and procedures of blending learning.The two classes were investigated with Critical Thinking Disposition Inventory-Chinese Version(CTDI-CV)at the beginning and end of the course.Results:At the beginning of the course,the total scores of CTDI-CV of the two classes were(217.33±14.90)and(218.31±16.29),respectively,with no significant difference(P>0.05).At the end of the course,the total scores of CTDI-CV of the experimental class and the control class were(237.84±17.53)and(224.22±17.52),respectively,and the difference was statistically significant(P<0.001).Conclusion:Blending learning may have a positive effect in improving the critical thinking disposition in undergraduates.展开更多
To analyze the psychometric performance of Learning Burnout Scale for Undergraduates(LBSU)in Guangdong province.LBSU was used to conduct the survey involving 1628 undergraduates who were selected with stratified rando...To analyze the psychometric performance of Learning Burnout Scale for Undergraduates(LBSU)in Guangdong province.LBSU was used to conduct the survey involving 1628 undergraduates who were selected with stratified random sampling from 7 colleges in Guangdong province.Cronbach’sαcoefficient and split-half reliability were used to analyze the internal consistency of the questionnaire.Convergent validity,discriminant validity and factor analysis were used to evaluate its structural validity.Ceiling and floor effect were used to analyze its sensitivity.Cronbach’sαcoefficient of the total questionnaire was 0.89 and cronbach’sαcoefficient of 3 dimensions were 0.73-0.78,which met with the requirements of the group comparison.Spearman-Brown split-half coefficient of the total questionnaire and 3 dimensions were 0.90,0.85,0.81,0.79,respectively,which also met with the requirements of the group comparison.Both the calibration success rate of convergent validity and discriminant validity of each dimension were 100%.Four components obtained from 20 items which cumulative variance contribution rate was 51.924%.The total score and score of each dimension were all normal distribution,without any floor or ceiling effect in dimensions.The psychometric performance of LBSU for assessing undergraduates in Guangdong province is valid and reliable.展开更多
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002).
文摘This paper examines the difficulties of managing distributed power systems,notably due to the increasing use of renewable energy sources,and focuses on voltage control challenges exacerbated by their variable nature in modern power grids.To tackle the unique challenges of voltage control in distributed renewable energy networks,researchers are increasingly turning towards multi-agent reinforcement learning(MARL).However,MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase.This unpredictability can lead to unsafe control measures.To mitigate these safety concerns in MARL-based voltage control,our study introduces a novel approach:Safety-ConstrainedMulti-Agent Reinforcement Learning(SC-MARL).This approach incorporates a specialized safety constraint module specifically designed for voltage control within the MARL framework.This module ensures that the MARL agents carry out voltage control actions safely.The experiments demonstrate that,in the 33-buses,141-buses,and 322-buses power systems,employing SC-MARL for voltage control resulted in a reduction of the Voltage Out of Control Rate(%V.out)from0.43,0.24,and 2.95 to 0,0.01,and 0.03,respectively.Additionally,the Reactive Power Loss(Q loss)decreased from 0.095,0.547,and 0.017 to 0.062,0.452,and 0.016 in the corresponding systems.
文摘Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_0733)Education Reform Foundation of Jiangsu Province(Grant No.2021JSJG364)+1 种基金Key Education Reform Foundation of NJUPT(Grant No.JG00220JX02,JG00218JX03,JG00215JX01,JG00214JX52)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Students'demand for online learning has exploded during the post-COvID-19 pandemic era.However,due to their poor learning experience,students'dropout rate and learning performance of online learning are not always satisfactory.The technical advantages of Beyond Fifth Generation(B5G)can guarantee a good multimedia Quality of Experience(QoE).As a special case of multimedia services,online learning takes into account both the usability of the service and the cognitive development of the users.Factors that affect the Quality of Online Learning Experience(OL-QoE)become more complicated.To get over this dilemma,we propose a systematic scheme by integrating big data,Machine Learning(ML)technologies,and educational psychology theory.Specifically,we first formulate a general definition of OL-QoE by data analysis and experimental verification.This formula considers both the subjective and objective factors(i.e.,video watching ratio and test scores)that most affect OLQoE.Then,we induce an extended layer to the classic Broad Learning System(BLS)to construct an Extended Broad Learning System(EBLS)for the students'OL-QoE prediction.Since the extended layer can increase the width of the BLS model and reduce the redundant nodes of BLS,the proposed EBLS can achieve a trade-off between the prediction accuracy and computation complexity.Finally,we provide a series of early intervention suggestions for different types of students according to their predicted OL-QoE values.Through timely interventions,their OL-QoE and learning performance can be improved.Experimental results verify the effectiveness oftheproposed scheme.
文摘Objective: The cultivation of the innovation ability and scientific research is one of the nursing learning objectives for undergraduate students. To explore the method and effect of training system of scientific research innovation ability of nursing undergraduates based on “3332”. Methods: Three course learning modules are constructed: stage-based course learning module, systematic project practice training module and comprehensive practice training module. A practical training platform for scientific research innovation projects is built, and undergraduate scientific research innovation ability training is carried out from both in-class and out-of-class lines. Results: Since 2017, the students have obtained 7 national innovation and entrepreneurship training programs, 52 university-level undergraduate scientific research projects, published more than 10 academic papers, and obtained 2 patent authorization. Conclusions: The training system of scientific research innovation ability of nursing undergraduates based on “3332” is conducive to the development of scientific research innovation ability of nursing students, and to cultivate nursing talents who can adapt to the development of the new era and have better post competence.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)Program(IITP-2020-0-01816)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)This research was also supported by National Research Foundation(NRF)of Korea Grant funded by the Korean Government(MSIT)(No.2021R1A4A3022102).
文摘Given the increasing number of countries reporting degraded air quality,effective air quality monitoring has become a critical issue in today’s world.However,the current air quality observatory systems are often prohibitively expensive,resulting in a lack of observatories in many regions within a country.Consequently,a significant problem arises where not every region receives the same level of air quality information.This disparity occurs because some locations have to rely on information from observatories located far away from their regions,even if they may be the closest available options.To address this challenge,a novel approach that leverages machine learning and deep learning techniques to forecast fine dust concentrations was proposed.Specifically,continuous location features in the form of latitude and longitude values were incorporated into our models.By utilizing a comprehensive dataset comprising weather conditions,air quality measurements,and location properties,various machine learning models,including Random Forest Regression,XGBoost Regression,AdaBoost Regression,and a deep learning model known as Long Short-Term Memory(LSTM)were trained.Our experimental results demonstrated that the LSTM model outperforms the other models,achieving the best score with a root mean squared error of 23.48 in predicting fine dust(PM10)concentrations on an hourly basis.Furthermore,the fact that incorporating location properties,such as longitude and latitude values,enhances the overall quality of the regression models was discovered.Additionally,the implications and contributions of our research were discussed.By implementing our approach,the cost associated with relying solely on existing observatories can be substantially reduced.This reduction in costs can pave the way for economically efficient fine dust observation systems,ensuring more widespread and accurate air quality monitoring across different regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979253,51879245)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821).
文摘Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.
文摘With the development of society,more and more cities are participating in the initiative to build learning cities.Constructing an evaluation indicator system for learning cities to monitor the progress and promote their growth has become increasingly important.This paper analyzes the preliminary framework of the UNESCO Global Learning City Index and R3L+Quality Framework.The comparison is made from the aspects of design philosophy,criteria of indicator,and the cycle of evaluation process.The findings suggest that the construction of an evaluation indicator system should be focused more on the diversity of learning city development,the construction of an evaluation process cycle,and the significance of building cooperative networks.
基金partially extracted from a PhD project at Asia-e University,Malaysia。
文摘Objective:This study aimed to determine the relationships between e-learning quality,student satisfaction,and learning outcomes and the mediating effect of student satisfaction.Methods:A cross-sectional quantitative correlational study using a predictive design and multivariate analysis method was employed in this study.A sample of 241 nursing students were recruited through an online survey based on a stratified random sampling technique.The variance-based Par tial Least Squares Structural Modeling analysis method was used to test the possible relationship and mediating effect among the variables.Results:The findings revealed statistical y significant relationships between e-learning quality,student satisfaction,and learning outcomes.A mediating effect of 37.2%is predicted for e-learning quality on learning outcomes through student satisfaction.Conclusions:This study emphasizes the learning needs of working nurses and the impact on their learning outcomes in e-learning nursing undergraduate programs.Advances in e-learning education have assisted nurses to be more self-sufficient in their pursuit of lifelong learning.
基金primarily supported by the Ministry of Higher Education through MRUN Young Researchers Grant Scheme(MY-RGS),MR001-2019,entitled“Climate Change Mitigation:Artificial Intelligence-Based Integrated Environmental System for Mangrove Forest Conservation,”received by K.H.,S.A.R.,H.F.H.,M.I.M.,and M.M.Asecondarily funded by the UM-RU Grant,ST065-2021,entitled Climate Smart Mitigation and Adaptation:Integrated Climate Resilience Strategy for Tropical Marine Ecosystem.
文摘A common difficulty in building prediction models with real-world environmental datasets is the skewed distribution of classes.There are significantly more samples for day-to-day classes,while rare events such as polluted classes are uncommon.Consequently,the limited availability of minority outcomes lowers the classifier’s overall reliability.This study assesses the capability of machine learning(ML)algorithms in tackling imbalanced water quality data based on the metrics of precision,recall,and F1 score.It intends to balance the misled accuracy towards the majority of data.Hence,10 ML algorithms of its performance are compared.The classifiers included are AdaBoost,SupportVector Machine,Linear Discriminant Analysis,k-Nearest Neighbors,Naive Bayes,Decision Trees,Random Forest,Extra Trees,Bagging,and the Multilayer Perceptron.This study also uses the Easy Ensemble Classifier,Balanced Bagging,andRUSBoost algorithm to evaluatemulti-class imbalanced learning methods.The comparison results revealed that a highaccuracy machine learning model is not always good in recall and sensitivity.This paper’s stacked ensemble deep learning(SE-DL)generalization model effectively classifies the water quality index(WQI)based on 23 input variables.The proposed algorithm achieved a remarkable average of 95.69%,94.96%,92.92%,and 93.88%for accuracy,precision,recall,and F1 score,respectively.In addition,the proposed model is compared against two state-of-the-art classifiers,the XGBoost(eXtreme Gradient Boosting)and Light Gradient Boosting Machine,where performance metrics of balanced accuracy and g-mean are included.The experimental setup concluded XGBoost with a higher balanced accuracy and G-mean.However,the SE-DL model has a better and more balanced performance in the F1 score.The SE-DL model aligns with the goal of this study to ensure the balance between accuracy and completeness for each water quality class.The proposed algorithm is also capable of higher efficiency at a lower computational time against using the standard SyntheticMinority Oversampling Technique(SMOTE)approach to imbalanced datasets.
基金The authors extend their appreciation to the King Salman Center for Disability Research for funding this work through Research Group no KSRG-2022-030.
文摘Mobile communication and the Internet of Things(IoT)technologies have recently been established to collect data from human beings and the environment.The data collected can be leveraged to provide intelligent services through different applications.It is an extreme challenge to monitor disabled people from remote locations.It is because day-to-day events like falls heavily result in accidents.For a person with disabilities,a fall event is an important cause of mortality and post-traumatic complications.Therefore,detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival rate.The current study introduces a Whale Optimization Algorithm Deep Transfer Learning-DrivenAutomated Fall Detection(WOADTL-AFD)technique to improve the Quality of Life for persons with disabilities.The primary aim of the presented WOADTL-AFD technique is to identify and classify the fall events to help disabled individuals.To attain this,the proposed WOADTL-AFDmodel initially uses amodified SqueezeNet feature extractor which proficiently extracts the feature vectors.In addition,the WOADTLAFD technique classifies the fall events using an extreme Gradient Boosting(XGBoost)classifier.In the presented WOADTL-AFD technique,the WOA approach is used to fine-tune the hyperparameters involved in the modified SqueezeNet model.The proposedWOADTL-AFD technique was experimentally validated using the benchmark datasets,and the results confirmed the superior performance of the proposedWOADTL-AFD method compared to other recent approaches.
文摘Soil is the major source of infinite lives on Earth and the quality of soil plays significant role on Agriculture practices all around.Hence,the evaluation of soil quality is very important for determining the amount of nutrients that the soil require for proper yield.In present decade,the application of deep learning models in many fields of research has created greater impact.The increasing soil data availability of soil data there is a greater demand for the remotely avail open source model,leads to the incorporation of deep learning method to predict the soil quality.With that concern,this paper proposes a novel model called Improved Soil Quality Prediction Model using Deep Learning(ISQP-DL).The work considers the chemical,physical and biological factors of soil in particular area to estimate the soil quality.Firstly,pH rating of soil samples has been collected from the soil testing laboratory from which the acidic range has been categorized through soil test and the same data has been taken as input to the Deep Neural Network Regression(DNNR)model.Secondly,soil nutrient data has been given as second input to the DNNR model.By utilizing this data set,the DNNR method is used to evaluate the fertility rate by which the soil quality has been estimated.For training and testing,the model uses Deep Neural Network Regression(DNNR),by utilizing the dataset.The results show that the proposed model is effective for SQP(Soil Quality Prediction Model)with efficient good fitting and generality is enhanced with input features with higher rate of classification accuracy.The results show that the proposed model achieves 96.7%of accuracy rate compared with existing models.
基金supported by the Fundamental Research Funds for the Central Universities(CUC230B008).
文摘Recommending high-quality news to users is vital in improving user stickiness and news platforms’reputation.However,existing news quality evaluation methods,such as clickbait detection and popularity prediction,are challenging to reflect news quality comprehensively and concisely.This paper defines news quality as the ability of news articles to elicit clicks and comments from users,which represents whether the news article can attract widespread attention and discussion.Based on the above definition,this paper first presents a straightforward method to measure news quality based on the comments and clicks of news and defines four news quality indicators.Then,the dataset can be labeled automatically by the method.Next,this paper proposes a deep learning model that integrates explicit and implicit news information for news quality evaluation(EINQ).The explicit information includes the headline,source,and publishing time of the news,which attracts users to click.The implicit information refers to the news article’s content which attracts users to comment.The implicit and explicit information affect users’click and comment behavior differently.For modeling explicit information,the typical convolution neural network(CNN)is used to get news headline semantic representation.For modeling implicit information,a hierarchical attention network(HAN)is exploited to extract news content semantic representation while using the latent Dirichlet allocation(LDA)model to get the subject distribution of news as a semantic supplement.Considering the different roles of explicit and implicit information for quality evaluation,the EINQ exploits an attention layer to fuse them dynamically.The proposed model yields the Accuracy of 82.31%and the F-Score of 80.51%on the real-world dataset from Toutiao,which shows the effectiveness of explicit and implicit information dynamic fusion and demonstrates performance improvements over a variety of baseline models in news quality evaluation.This work provides empirical evidence for explicit and implicit factors in news quality evaluation and a new idea for news quality evaluation.
文摘Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.
文摘Objective: The purposes of this study were to analyze the influencing factors of self-directed learning readiness(SDLR) of nursing undergraduates and explore the impacts of learning attitude and self-efficacy on nursing undergraduates.Methods: A total of 500 nursing undergraduates were investigated in Tianjin, with the Chinese version of SDLR scale, learning attitude questionnaire of nursing college students, academic self-efficacy scale, and the general information questionnaire.Result: The score of SDLR was 149.99±15.73. Multiple stepwise regressions indicated that academic self-efficacy, learning attitude, attitudes to major of nursing, and level of learning difficulties were major influential factors and explained 48.1% of the variance in SDLR of nursing interns.Conclusions: The score of SDLR of nursing undergraduates is not promising. It is imperative to correct students' learning attitude, improve self-efficacy, and adopt appropriate teaching model to improve SDLR.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2020SP007]the National Natural Science Foundation of China[grant number 41906167]the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology[grant number 2018r077].
基金This paper was supported by“the National Social Science Fund of China”(Grant Number:17BYY098).
文摘This paper attempts to investigate the feasibility and learning effects of English fragmented learning via mobile devices.Questionnaires and interviews were employed to do the survey on 157 undergraduates from 24 universities in China.The research findings reveal that English fragmented learning via mobile devices has some positive effects on the improvement of learners’knowledge and learning ability.In addition,there have been a certain number of useful learning resources and platforms with diversified features.The study has the implications that fragmented mobile learning is feasible and can be popularized in English learning.
文摘Objective:To explore the influence of blending learning on the critical thinking disposition among undergraduates.Methods:Two undergraduate classes majoring in Applied Psychology with similar level of critical thinking disposition were selected as the research subjects.Class A(106 students)was the experimental class,and class B(131 students)was the control class.During the research period of one semester(four months),the following measures were implemented for the two classes.The control class studied Developmental Psychology under the conventional teaching methods and procedures,while the experimental class studied Developmental Psychology according to the requirements and procedures of blending learning.The two classes were investigated with Critical Thinking Disposition Inventory-Chinese Version(CTDI-CV)at the beginning and end of the course.Results:At the beginning of the course,the total scores of CTDI-CV of the two classes were(217.33±14.90)and(218.31±16.29),respectively,with no significant difference(P>0.05).At the end of the course,the total scores of CTDI-CV of the experimental class and the control class were(237.84±17.53)and(224.22±17.52),respectively,and the difference was statistically significant(P<0.001).Conclusion:Blending learning may have a positive effect in improving the critical thinking disposition in undergraduates.
文摘To analyze the psychometric performance of Learning Burnout Scale for Undergraduates(LBSU)in Guangdong province.LBSU was used to conduct the survey involving 1628 undergraduates who were selected with stratified random sampling from 7 colleges in Guangdong province.Cronbach’sαcoefficient and split-half reliability were used to analyze the internal consistency of the questionnaire.Convergent validity,discriminant validity and factor analysis were used to evaluate its structural validity.Ceiling and floor effect were used to analyze its sensitivity.Cronbach’sαcoefficient of the total questionnaire was 0.89 and cronbach’sαcoefficient of 3 dimensions were 0.73-0.78,which met with the requirements of the group comparison.Spearman-Brown split-half coefficient of the total questionnaire and 3 dimensions were 0.90,0.85,0.81,0.79,respectively,which also met with the requirements of the group comparison.Both the calibration success rate of convergent validity and discriminant validity of each dimension were 100%.Four components obtained from 20 items which cumulative variance contribution rate was 51.924%.The total score and score of each dimension were all normal distribution,without any floor or ceiling effect in dimensions.The psychometric performance of LBSU for assessing undergraduates in Guangdong province is valid and reliable.