Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D p...Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).展开更多
Based on analysis of the supporting object of bulking soft rock and comparing the supporting difficulty of the repairing projects with that of the newly excavated projects, this paper proposes a method to determine re...Based on analysis of the supporting object of bulking soft rock and comparing the supporting difficulty of the repairing projects with that of the newly excavated projects, this paper proposes a method to determine reasonable supporting parameters for soft rock project repairing. This method has been verified to be reasonable and economical in an industrial test.展开更多
Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Uni...Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Union achieved commercialised production.In this century,a few pilot projects in Australia also achieved short-term small-scale commercialised production using modern UCG technology.However,the commercialisation of UCG,especially medium-deep UCG projects with good development prospects but difficult underground engineering conditions,has not progressed smoothly around the world.Considering investment economy,a single gasifier must realise a high daily output and accumulated output,as well as hold a long gasification tunnel to control a large number of coal resources.However,a long gasification tunnel can easily be affected by blockages and failure,for which the remedial solutions are difficult and expensive,which greatly restricts the investment economy.The design of the underground gasifier determines the success or failure of UCG projects,and it also requires the related petroleum engineering technology.Combining the advantages of the linear horizontal well(L-CRIP)and parallel horizontal well(P-CRIP),this paper proposes a new design scheme for an“inclined ladder”underground gasifier.That is to say,the combination of the main shaft of paired P-CRIP and multiple branch horizontal well gasification tunnels is adopted to realise the control of a large number of coal resources in a single gasifier.The completion of the main shaft by well cementation is beneficial for maintaining the integrity of the main shaft and the stability of the main structure.The branch horizontal well is used as the gasification tunnel,but the length and number of retracting injection points are limited,effectively reducing the probability of blockage or failure.The branch horizontal well spacing can be adjusted flexibly to avoid minor faults and large cracks,which is conducive to increasing the resource utilisation rate.In addition,for multi-layer thin coal seams or ultra-thick coal seams,a multi-layer gasifier sharing vertical well sections can be deployed,thereby saving investment on the vertical well sections.Through preliminary analysis,this gasifier design scheme can be realised in engineering,making it suitable for largescale deployment where it can increase the resource utilisation rate and ensure stable and controllable operations.The new gasifier has outstanding advantages in investment economy,and good prospects for application in the commercial UCG projects of medium-deep coal seams.展开更多
Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as...Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role ...Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.展开更多
In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing custome...In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing customer trust in AI systems through a mixed-methods approach, blending quantitative analysis with qualitative insights to create a comprehensive conceptual framework. Quantitatively, the study analyzes responses from 1248 participants using structural equation modeling (SEM), exploring interactions between technological factors like perceived usefulness and transparency, psychological factors including perceived risk and domain expertise, and organizational factors such as leadership support and ethical accountability. The results confirm the model, showing significant impacts of these factors on consumer trust and AI adoption attitudes. Qualitatively, the study includes 35 semi-structured interviews and five case studies, providing deeper insight into the dynamics shaping trust. Key themes identified include the necessity of explainability, domain competence, corporate culture, and stakeholder engagement in fostering trust. The qualitative findings complement the quantitative data, highlighting the complex interplay between technology capabilities, human perceptions, and organizational practices in establishing trust in AI. By integrating these findings, the study proposes a novel conceptual model that elucidates how various elements collectively influence consumer trust in AI. This model not only advances theoretical understanding but also offers practical implications for businesses and policymakers. The research contributes to the discourse on trust creation and decision-making in technology, emphasizing the need for interdisciplinary efforts to address societal challenges associated with technological advancements. It lays the groundwork for future research, including longitudinal, cross-cultural, and industry-specific studies, to further explore consumer trust in AI.展开更多
From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise c...From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.展开更多
The Par-Tapi-Narmada river link envisages transfer of surplus water from west flowing rivers between Par and Tapi in Gujarat State, India to water deficit areas in North Gujarat. The scheme is located mainly in southe...The Par-Tapi-Narmada river link envisages transfer of surplus water from west flowing rivers between Par and Tapi in Gujarat State, India to water deficit areas in North Gujarat. The scheme is located mainly in southern Gujarat but it also covers part of the areas of Maharashtra, North of Mumbai on the Western Ghats of India. The main aim of Par-Tapi-Narmada link is to transfer the surplus waters of Par, Auranga, Ambica and Purna River basins to take over part of Narmada Canal command (Miyagam branch) after providing enroute irrigation. It is proposed that water saved in Sardar Sarovar Project, as a result of this transfer, would be taken further northwards to benefit water scarce areas of north Gujarat and also westwards in Saurashtra and Kutch regions. The construction of seven reservoirs on Par-Tapi-Narmada River Link Project would affect land use/land cover, settlements and infrastructure facilities within and around reservoir area. Thus, the submergence impact analysis of all the seven reservoirs of this project have been carried out by using remote sensing and GIS techniques for planning and designing of the structures. Out of the seven reservoirs, the paper discusses submergence analysis of Kelwan Dam reservoir which is located in geologically complex region of the Dangs district. The study attempts to assess the present problems of submergence of land, forest, agriculture, settlements and infrastructure facilities by using GIS techniques for taking alternative remedial measures prior and during construction of the dams.展开更多
Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle w...Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.展开更多
With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDW...With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDWP)is proposed to provide ample drinking water to Dehradun City and its suburban areas.This paper examined economic significance and environmental impacts of the SDDWP in Garhwal Himalaya,India.To conduct this study,we collected data from both primary and secondary sources.There are 12 villages and 3 forest divisions in the surrounding areas of the proposed dam project,of which 3 villages will be fully submerged and 50 households will be affected.For this study,50 heads of the households were interviewed in the 3 submerged villages.The questions mainly focused on economic significance,environmental impacts,and rehabilitation issues of the dam project.The findings of this study indicate that economic significance of the dam project is substantial,including providing ample water for drinking and irrigation,contributing to groundwater recharge,creating job opportunities,and promoting the development of tourism and fisheries in the Doon Valley.In terms of the rehabilitation of the affected people,there are only 50 households in need of rehabilitation.Currently,the arable land of these affected people is not sufficient to sustain their livelihoods.The entire landscape is fragile,rugged,and precipitous;therefore,the affected people are willing to rehabilitate to more suitable areas in the Doon Valley.Moreover,it is essential to provide them with sufficient compensation packages including the compensation of arable land,houses,cash,common property resources,institutions,belongingness,and cultural adaptation.On the other hand,the proposed dam project will have adverse environmental impacts including arable land degradation,forest degradation,loss of fauna and flora,soil erosion,landslides,and soil siltation.These impacts will lead to the ecological imbalances in both upstream and downstream areas.This study suggests that the affected people should be given sufficient compensation packages in all respects.Afforestation programs can be launched in the degraded areas to compensate for the loss of forest in the affected areas.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
Bangladesh is a densely populated country than many other countries of the world. The population growth is termed as alarming, however, knowledge of growth in the years to come would be useful in planning for the deve...Bangladesh is a densely populated country than many other countries of the world. The population growth is termed as alarming, however, knowledge of growth in the years to come would be useful in planning for the development of the country. This article is based on the projection of future population growth of the country. The available actual population census data during 1991-2011 of Bangladesh was applied to the application of a non-linear, non-autonomous ordinary differential equation familiar as Verhulst logistic population model with the maximum environmental capability of Bangladesh. Bangladesh will reach its carrying capacity of 245.09 million population in the next 56 years i.e. the year 2067 and then it decreases as S-shaped curve. The article has provided a focus on the changing trends of the growth of the population of Bangladesh.展开更多
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the ...The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the excavation works. Comparative study was done between models with intact rock mass and discontinuities to assess the stability of cavern as a result of blast loads. Numerical modelling was performed with 3 dimensional distinct element code(3 DEC) to analyse the performance of cavern walls in terms of displacement and to compute peak particle velocities(PPV) both around the cavern periphery and at surface of models. Results showed that the velocity wave with higher frequency exhibited large displacements around the periphery of cavern. Computation of PPV showed that model with horizontal joint sets showed lower PPV in comparison to model with intact rock mass. PPV values were also analysed on the surface for model consisting vertical joints spaced at 4 m intervals. Comparative study of PPV on surface vertically above the blast location between models with horizontal joints spaced at 4 m and vertical joints at 4 m intervals were conducted. Results depicted higher magnitudes of PPV for model with vertical joints in comparison to model with horizontal joints.展开更多
文摘Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).
文摘Based on analysis of the supporting object of bulking soft rock and comparing the supporting difficulty of the repairing projects with that of the newly excavated projects, this paper proposes a method to determine reasonable supporting parameters for soft rock project repairing. This method has been verified to be reasonable and economical in an industrial test.
文摘Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Union achieved commercialised production.In this century,a few pilot projects in Australia also achieved short-term small-scale commercialised production using modern UCG technology.However,the commercialisation of UCG,especially medium-deep UCG projects with good development prospects but difficult underground engineering conditions,has not progressed smoothly around the world.Considering investment economy,a single gasifier must realise a high daily output and accumulated output,as well as hold a long gasification tunnel to control a large number of coal resources.However,a long gasification tunnel can easily be affected by blockages and failure,for which the remedial solutions are difficult and expensive,which greatly restricts the investment economy.The design of the underground gasifier determines the success or failure of UCG projects,and it also requires the related petroleum engineering technology.Combining the advantages of the linear horizontal well(L-CRIP)and parallel horizontal well(P-CRIP),this paper proposes a new design scheme for an“inclined ladder”underground gasifier.That is to say,the combination of the main shaft of paired P-CRIP and multiple branch horizontal well gasification tunnels is adopted to realise the control of a large number of coal resources in a single gasifier.The completion of the main shaft by well cementation is beneficial for maintaining the integrity of the main shaft and the stability of the main structure.The branch horizontal well is used as the gasification tunnel,but the length and number of retracting injection points are limited,effectively reducing the probability of blockage or failure.The branch horizontal well spacing can be adjusted flexibly to avoid minor faults and large cracks,which is conducive to increasing the resource utilisation rate.In addition,for multi-layer thin coal seams or ultra-thick coal seams,a multi-layer gasifier sharing vertical well sections can be deployed,thereby saving investment on the vertical well sections.Through preliminary analysis,this gasifier design scheme can be realised in engineering,making it suitable for largescale deployment where it can increase the resource utilisation rate and ensure stable and controllable operations.The new gasifier has outstanding advantages in investment economy,and good prospects for application in the commercial UCG projects of medium-deep coal seams.
文摘Generally hidden from public view, out of our daily thoughts, and literally under our feet, are myriad urban underground tunnels that make our modern megacities possible. From their ancient beginnings in antiquity, as a means of supplying fresh water and draining waste water from cities, underground tunnels evolved into a means of providing high capacity rail mass transit in our most densely populated urban centers. This paper provides a broad overview of the evolution of urban tunnels across a 6000 year time span and includes the specific engineering formulas/computations for the earliest 19th century subways/infrastructure projects based on the Roman vaulted arch tunnel.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the National Natural Science Foundation of China,No.82171521(to CL)the Special Funds ofTaishan Scholars Project of Shandong Province,No.tsqn202211368(to CL)+2 种基金the Natural Science Foundation of Shandong Province,Nos.ZR2022YQ65(to CL),ZR2021MH073(to CL),ZR2019PH109(to WW)the Projects of Medical and Health Technology Development Program in Shandong Province,China,Nos.202003090720(to DZ),202003070728(to JL),2019 WS329(to DW)the Scientific Research Foundation of Binzhou Medical University,No.BY2018KJ21(to DW)。
文摘Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability.
文摘In an era dominated by artificial intelligence (AI), establishing customer confidence is crucial for the integration and acceptance of AI technologies. This interdisciplinary study examines factors influencing customer trust in AI systems through a mixed-methods approach, blending quantitative analysis with qualitative insights to create a comprehensive conceptual framework. Quantitatively, the study analyzes responses from 1248 participants using structural equation modeling (SEM), exploring interactions between technological factors like perceived usefulness and transparency, psychological factors including perceived risk and domain expertise, and organizational factors such as leadership support and ethical accountability. The results confirm the model, showing significant impacts of these factors on consumer trust and AI adoption attitudes. Qualitatively, the study includes 35 semi-structured interviews and five case studies, providing deeper insight into the dynamics shaping trust. Key themes identified include the necessity of explainability, domain competence, corporate culture, and stakeholder engagement in fostering trust. The qualitative findings complement the quantitative data, highlighting the complex interplay between technology capabilities, human perceptions, and organizational practices in establishing trust in AI. By integrating these findings, the study proposes a novel conceptual model that elucidates how various elements collectively influence consumer trust in AI. This model not only advances theoretical understanding but also offers practical implications for businesses and policymakers. The research contributes to the discourse on trust creation and decision-making in technology, emphasizing the need for interdisciplinary efforts to address societal challenges associated with technological advancements. It lays the groundwork for future research, including longitudinal, cross-cultural, and industry-specific studies, to further explore consumer trust in AI.
文摘From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis.
文摘The Par-Tapi-Narmada river link envisages transfer of surplus water from west flowing rivers between Par and Tapi in Gujarat State, India to water deficit areas in North Gujarat. The scheme is located mainly in southern Gujarat but it also covers part of the areas of Maharashtra, North of Mumbai on the Western Ghats of India. The main aim of Par-Tapi-Narmada link is to transfer the surplus waters of Par, Auranga, Ambica and Purna River basins to take over part of Narmada Canal command (Miyagam branch) after providing enroute irrigation. It is proposed that water saved in Sardar Sarovar Project, as a result of this transfer, would be taken further northwards to benefit water scarce areas of north Gujarat and also westwards in Saurashtra and Kutch regions. The construction of seven reservoirs on Par-Tapi-Narmada River Link Project would affect land use/land cover, settlements and infrastructure facilities within and around reservoir area. Thus, the submergence impact analysis of all the seven reservoirs of this project have been carried out by using remote sensing and GIS techniques for planning and designing of the structures. Out of the seven reservoirs, the paper discusses submergence analysis of Kelwan Dam reservoir which is located in geologically complex region of the Dangs district. The study attempts to assess the present problems of submergence of land, forest, agriculture, settlements and infrastructure facilities by using GIS techniques for taking alternative remedial measures prior and during construction of the dams.
基金supported by the National Natural Science Foundation of China(Nos.12075027,1232509,11961141004,and 12175152)the National Science Foundation(Nos.Phys-2011890 and Phy-1430152)。
文摘Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.
文摘With the population growth through natural growth and migration,coupled with the city expansion,it is the fact that Dehradun City in India faces severe water scarcity.Therefore,the Song Dam Drinking Water Project(SDDWP)is proposed to provide ample drinking water to Dehradun City and its suburban areas.This paper examined economic significance and environmental impacts of the SDDWP in Garhwal Himalaya,India.To conduct this study,we collected data from both primary and secondary sources.There are 12 villages and 3 forest divisions in the surrounding areas of the proposed dam project,of which 3 villages will be fully submerged and 50 households will be affected.For this study,50 heads of the households were interviewed in the 3 submerged villages.The questions mainly focused on economic significance,environmental impacts,and rehabilitation issues of the dam project.The findings of this study indicate that economic significance of the dam project is substantial,including providing ample water for drinking and irrigation,contributing to groundwater recharge,creating job opportunities,and promoting the development of tourism and fisheries in the Doon Valley.In terms of the rehabilitation of the affected people,there are only 50 households in need of rehabilitation.Currently,the arable land of these affected people is not sufficient to sustain their livelihoods.The entire landscape is fragile,rugged,and precipitous;therefore,the affected people are willing to rehabilitate to more suitable areas in the Doon Valley.Moreover,it is essential to provide them with sufficient compensation packages including the compensation of arable land,houses,cash,common property resources,institutions,belongingness,and cultural adaptation.On the other hand,the proposed dam project will have adverse environmental impacts including arable land degradation,forest degradation,loss of fauna and flora,soil erosion,landslides,and soil siltation.These impacts will lead to the ecological imbalances in both upstream and downstream areas.This study suggests that the affected people should be given sufficient compensation packages in all respects.Afforestation programs can be launched in the degraded areas to compensate for the loss of forest in the affected areas.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
文摘Bangladesh is a densely populated country than many other countries of the world. The population growth is termed as alarming, however, knowledge of growth in the years to come would be useful in planning for the development of the country. This article is based on the projection of future population growth of the country. The available actual population census data during 1991-2011 of Bangladesh was applied to the application of a non-linear, non-autonomous ordinary differential equation familiar as Verhulst logistic population model with the maximum environmental capability of Bangladesh. Bangladesh will reach its carrying capacity of 245.09 million population in the next 56 years i.e. the year 2067 and then it decreases as S-shaped curve. The article has provided a focus on the changing trends of the growth of the population of Bangladesh.
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
文摘The paper gives an insight into the behaviour of large underground caverns which are subjected to blast loads. Caverns are generally constructed in hard rock formation which compels us to use blasting methods for the excavation works. Comparative study was done between models with intact rock mass and discontinuities to assess the stability of cavern as a result of blast loads. Numerical modelling was performed with 3 dimensional distinct element code(3 DEC) to analyse the performance of cavern walls in terms of displacement and to compute peak particle velocities(PPV) both around the cavern periphery and at surface of models. Results showed that the velocity wave with higher frequency exhibited large displacements around the periphery of cavern. Computation of PPV showed that model with horizontal joint sets showed lower PPV in comparison to model with intact rock mass. PPV values were also analysed on the surface for model consisting vertical joints spaced at 4 m intervals. Comparative study of PPV on surface vertically above the blast location between models with horizontal joints spaced at 4 m and vertical joints at 4 m intervals were conducted. Results depicted higher magnitudes of PPV for model with vertical joints in comparison to model with horizontal joints.