With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response str...With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response strategies of underground coal fires is of great significance to accelerate the green prevention and control of coal fires,energy conservation and emission reduction.In this paper,we summarized and sorted out the research status of underground coal fires,focused on the theoretical and technical issues such as underground coal fire combustion mechanism,multiphysics coupling effect of coal fire combustion,fire prevention and extinguishing technology for underground coal fires,and beneficial utilization technology,and described the latest research progress of the prevention and control for underground coal fire hazards.Finally,the key research problems in the field of underground coal fire hazards prevention and control were proposed in the direction of the basic theory,technology research,comprehensive management and utilization,with a view to providing ideas and solutions for the management of underground coal fires.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. ...The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.展开更多
In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollut...In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.展开更多
Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash,...Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO 2 disposal method is put forward.展开更多
Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried o...Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried out.The composition of the gas produced,the time ratio of the two stages,and the role of the temperature field were analysed.The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage.Feed oxygen concentrations of 30%, 35%,40%,45%.60%,or 80%gave time ratios(first stage to second stage) of 1:0.12,1:0.21.1:0.51,1:0.64, 1:0.90.and 1:4.0 respectively.Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4℃/min to 2.3-6.8℃/min.But this rate increased with increasing oxygen concentrations in the first stage.The caloric value of the syngas improves with increased oxygen concentration in the first stage.Injection of 80%oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time.The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm^3 to 10.54 MJ/Nm^3.展开更多
To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasificat...To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.展开更多
To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensive...To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.展开更多
From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication ...From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.展开更多
As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geo...As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geological and mining factors influencing mining-related ground cracks in Shanxi,a detailed investigation was conducted on 13 mining-induced surface cracks in Shanxi.Based on the results,the degrees of damage at the study sites were empirically classified into serious,moderate,and minor,and the influential geological and mining factors(e.g.,proportions of loess and sandstone in the mining depth,ratio of rock thickness to mining thickness,and ground slope)were discussed.According to the analysis results,three factors(proportion of loess,ratio of rock thickness to mining thickness,and ground slope)play a decisive role in ground cracks and can be respectively considered as the critical material,mechanical,and geometric conditions for the occurrence of mining surface disasters.Together,these three factors have a strong influence on the occurrence of serious discontinuous ground deformation.The results can be applied to help prevent and control ground damage caused by coal mining.The findings also provide a direct reference for predicting and eliminating hidden ground hazards in mining areas.展开更多
The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and opti...The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.展开更多
Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally ...Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally friendly UCG system construction. One of the most important UCG's problems is underground control of combustion area for efficient gas production, estimation of subsidence and gas leakage to the surface. For this objective, laboratory experiments were conducted according to the UCG model to iden- ti[y the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area. While burning coal specimens, that had been sampled from various coal deposits, electrical resistivity was monitored. Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used for laboratory resistivity measurement of rock samples. Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature. Combusting coal electro conductivity has compli- cated multistage type of change. Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.展开更多
This article presents the evolution law of temperature fields in a large-scale laboratory Underground Coal Gasification reactions using Ulanqab lignite under actual conditions.The results show that in the cultivation ...This article presents the evolution law of temperature fields in a large-scale laboratory Underground Coal Gasification reactions using Ulanqab lignite under actual conditions.The results show that in the cultivation stage of oxidation zone,the main direction of the temperature field expansion is consistent with the crack direction of the coal seam.In the gasification stabilization stage,the main direction of the temperature field expansion is along the channel.The temperature of the coal seam and the overlying rock mass at its interface with the furnace directly above the gasification channel is equivalent to that of the coal seam temperature,and this temperature is much greater than the temperatures observed near both side walls of the gasification channel at the interface.However,temperatures perpendicular to the axis of the gasification channel are similar at a vertical distance of 40 cm away from the interface.The temperature distributions indicate that the transmission of heat through the overlying rock mass is more rapid in the vertical direction than in the horizontal direction.Moreover,some degree of thermal dispersion is observed in the vertical direction near the outlet.The thermal dispersion coefficient is 0.72 and dispersion angle γ is 78.7°.展开更多
Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined a...Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis,2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.展开更多
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by...During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.展开更多
To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and d...To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.展开更多
The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing g...The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.展开更多
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects...This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.展开更多
基金supported by the National Natural Science Foundation of China (52174229)the Natural Science Foundation of Liaoning Province (2021-KF-23-01),for which the authors are very thankful.
文摘With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response strategies of underground coal fires is of great significance to accelerate the green prevention and control of coal fires,energy conservation and emission reduction.In this paper,we summarized and sorted out the research status of underground coal fires,focused on the theoretical and technical issues such as underground coal fire combustion mechanism,multiphysics coupling effect of coal fire combustion,fire prevention and extinguishing technology for underground coal fires,and beneficial utilization technology,and described the latest research progress of the prevention and control for underground coal fire hazards.Finally,the key research problems in the field of underground coal fire hazards prevention and control were proposed in the direction of the basic theory,technology research,comprehensive management and utilization,with a view to providing ideas and solutions for the management of underground coal fires.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
基金Supported by National Natural Science Foundation of China(5 990 60 14 )
文摘The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.
基金Projects 20207014 and 50674084 supported by the National Natural Science Foundation of China
文摘In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.
基金TheHi TechResearchandDevelopmentProgramofChina (S 86 3)
文摘Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO 2 disposal method is put forward.
基金financial support of the National Natural Science Foundation of China(No.50876112)the Fundamental Research Funds for the Central Universities (No.2009QH13)the Program of International S&T Cooperation (No.2009DFR60180,No.2010DFR60610)
文摘Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried out.The composition of the gas produced,the time ratio of the two stages,and the role of the temperature field were analysed.The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage.Feed oxygen concentrations of 30%, 35%,40%,45%.60%,or 80%gave time ratios(first stage to second stage) of 1:0.12,1:0.21.1:0.51,1:0.64, 1:0.90.and 1:4.0 respectively.Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4℃/min to 2.3-6.8℃/min.But this rate increased with increasing oxygen concentrations in the first stage.The caloric value of the syngas improves with increased oxygen concentration in the first stage.Injection of 80%oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time.The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm^3 to 10.54 MJ/Nm^3.
文摘To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.
基金Financial provided by the National Natural Science Foundation of China (Nos. 51574123 and U1361118)the China Postdoctoral Science Foundation (No. 2015M 582118)
文摘To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.
基金Project OC4501 supported by the Scientific Research Fund of China University of Mining & Technology
文摘From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51704205 and 51574132)Shanxi Natural Science Foundation of China(Grant No.201701D221025)Key R&D Plan projects in Shanxi Province of China(Grant No.201803D31044).
文摘As one of the largest coal-rich provinces in China,Shanxi has extensive underground coal-mining operations.These operations have caused numerous ground cracks and substantial environmental damage.To study the main geological and mining factors influencing mining-related ground cracks in Shanxi,a detailed investigation was conducted on 13 mining-induced surface cracks in Shanxi.Based on the results,the degrees of damage at the study sites were empirically classified into serious,moderate,and minor,and the influential geological and mining factors(e.g.,proportions of loess and sandstone in the mining depth,ratio of rock thickness to mining thickness,and ground slope)were discussed.According to the analysis results,three factors(proportion of loess,ratio of rock thickness to mining thickness,and ground slope)play a decisive role in ground cracks and can be respectively considered as the critical material,mechanical,and geometric conditions for the occurrence of mining surface disasters.Together,these three factors have a strong influence on the occurrence of serious discontinuous ground deformation.The results can be applied to help prevent and control ground damage caused by coal mining.The findings also provide a direct reference for predicting and eliminating hidden ground hazards in mining areas.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of Chinese(02019)Anhui Province Science and Technology Tackling Key Project(08010202058)
文摘The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.
基金provided by the Ministry of EducationScience of Russian Federation (No. P1679),Far Eastern Federal University
文摘Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally friendly UCG system construction. One of the most important UCG's problems is underground control of combustion area for efficient gas production, estimation of subsidence and gas leakage to the surface. For this objective, laboratory experiments were conducted according to the UCG model to iden- ti[y the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area. While burning coal specimens, that had been sampled from various coal deposits, electrical resistivity was monitored. Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used for laboratory resistivity measurement of rock samples. Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature. Combusting coal electro conductivity has compli- cated multistage type of change. Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.
基金supported by the National High Technology Research and Development Program of China(No.2011AA050106)Hubei Technological Innovation Special Fund(CN)(No.343-0402-YQN-TWEP).
文摘This article presents the evolution law of temperature fields in a large-scale laboratory Underground Coal Gasification reactions using Ulanqab lignite under actual conditions.The results show that in the cultivation stage of oxidation zone,the main direction of the temperature field expansion is consistent with the crack direction of the coal seam.In the gasification stabilization stage,the main direction of the temperature field expansion is along the channel.The temperature of the coal seam and the overlying rock mass at its interface with the furnace directly above the gasification channel is equivalent to that of the coal seam temperature,and this temperature is much greater than the temperatures observed near both side walls of the gasification channel at the interface.However,temperatures perpendicular to the axis of the gasification channel are similar at a vertical distance of 40 cm away from the interface.The temperature distributions indicate that the transmission of heat through the overlying rock mass is more rapid in the vertical direction than in the horizontal direction.Moreover,some degree of thermal dispersion is observed in the vertical direction near the outlet.The thermal dispersion coefficient is 0.72 and dispersion angle γ is 78.7°.
基金Projects 59906014, 50276066 and 20207014 supported by National Natural Science Foundation of China
文摘Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis,2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.
文摘During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.
基金supported by the National Natural Science Foundation of China(Nos.52174191 and 51874191)the National Key R&D Program of China(No.2017YFC0805201)+1 种基金Qingchuang Science and Technology Project of Shandong Province University(No.2020KJD002)Taishan Scholars Project Special Funding(No.TS20190935).
文摘To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.
基金supported by a grant from the Major State Basic Research and Development Program of China (No. 2007CB714102)sponsored by the Fundamental Research Funds for the Central Universities (No. 2009B00714)
文摘The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice.
基金This work has been supported by the National Key Research and Development Program(Grant No.2017YFC0603000)which was jointly completed by the Coal Mining Research Branch of CCRI,China University of Mining and Technology(Xuzhou and Beijing),Henan Polytechnic UniversityXinji Energy Company Limited of China Coal Energy Group.This work was also supported by the National Natural Science Foundation of China(Grant No.51927807)。
文摘This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.