Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified...A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified version of the commercial software AUTODYN.Three different criteria,i.e.a peak particle velocity (PPV) criterion,an effective strain (ES) criterion,and a damage criterion,are employed to examine the explosion-induced damaged zones of the underground rock chamber.The results show that the charge chamber geometry,coupling condition and charge configuration affect significantly the dynamic pressure exerted on the rock chamber wall.Thus the chamber is damaged.An inaccurate approximation of pressure boundary ignoring the influences of these factors would result in an erroneous prediction of damaged area and damage intensity of the charge chamber.The PPV criterion yields the largest damaged zone while the ES criterion gives the smallest one.The presented numerical simulation method is superior in consideration of the chamber geometry,loading density,coupling condition and rock quality.The predicted damage intensity of rock mass can be categorized quantitatively by an isotropic damage scalar.Safe separation distance of adjacent chambers for a specific charge weight is also estimated.展开更多
The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale...The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.展开更多
It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on th...It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.展开更多
Calculating the parameters of the ground shock induced by an underground explosion is a complex energy coupling problem.It is difficult to establish a unified ground shock coupling law from limited test data.This pape...Calculating the parameters of the ground shock induced by an underground explosion is a complex energy coupling problem.It is difficult to establish a unified ground shock coupling law from limited test data.This paper summarizes the research results obtained at home and abroad and systematically analyzes the coupling mechanism of craters formed by an underground explosion and the ground shock.The differences between the concepts of"closed-explosion critical depth"and"equivalent closed-explosion critical depth"are clearly explained.The spreading of the ground shock energy is attributed to the explosive expansion of the air cavity,revealing a linear relationship between the volume of the cavity region(or the volume of the crack region)and the ground shock energy associated with the underground explosion.The proportionality factor is related to the mechanical properties of the medium and is independent of the magnitude of the explosion equivalent.Based on this,a theoretical calculation formula and conversion method for the ground shock coupling coefficient were established.Explosion tests were conducted in clay and Plexiglass under varying burial depths.The test results were consistent with the theoretically calculated results.Our study provides a theoretical basis for the design of explosion-resistant structures in underground engineering.展开更多
Over the past half century, I have maintained research connections with Russian scientists during investigations in seismology and mineral physics. These studies have focused on detection and discrimination of undergr...Over the past half century, I have maintained research connections with Russian scientists during investigations in seismology and mineral physics. These studies have focused on detection and discrimination of underground nuclear explosions and measurements of the physical properties of minerals at high pressures and temperatures. During this period, I have also visited many research laboratories in Russia, including Moscow, Chernogolovka, Novosibirsk and St. Petersburg. The objective of this paper is to relate this history.展开更多
In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide t...In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide the results from automatic recognition and the manual recognition of the first motion for 25 underground explosions.展开更多
Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amp...Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.展开更多
The contained underground explosion (CUE) usually generates huge number of aftershocks. This kind of after-shocks induced by three CUEs was investigated in the paper. The conclusions show that the duration of aftersho...The contained underground explosion (CUE) usually generates huge number of aftershocks. This kind of after-shocks induced by three CUEs was investigated in the paper. The conclusions show that the duration of aftershock waveforms are rather short, 70 percent of them range from 2 to 7; the occurrences of the aftershocks conform to negative power function, which has the power of -1.6. The aftershock sequence attenuates a little bit faster, with power of -1.0, within two weeks of post-explosions. During the early stage of post-explosions the aftershocks show up in a cluster, however, they usually show up individually during the late stage of post-explosions. The number of aftershocks generated by the compatible explosions differs by several times because of different me-dium and geological structure; within one month after an explosion with Richater magnitude of 5.5, the number of aftershocks attenuates to the background. Hereafter there are still tiny numbers of aftershocks.展开更多
Much effort has been dedicated to the study of underground explosions because they pose a major threat to people and structures below or above the ground.In this regard,it is especially important to model the propagat...Much effort has been dedicated to the study of underground explosions because they pose a major threat to people and structures below or above the ground.In this regard,it is especially important to model the propagation of blast waves in soil and their effects on structures.The main phenomena caused by underground explosive detonation that must be addressed are crater or camouflet formation,shock wave and elastic–plastic wave propagation in soil,and soil-structure interaction.These phenomena can be numerically simulated using hydrocodes,but much care must be taken to obtain reliable results.The objective of this study is to analyze the ability of a hydrocode and simple soil models that do not require much calibration to approximately reproduce experimental and empirical results related to different buried blast events and to provide general guidelines for the simulation of this type of phenomena.In this regard,crater formation,soil ejecta,blast wave propagation in soil,and their effects on structures below and above the ground are numerically simulated using different soil models and parameters;the results are analyzed.The properties of soil have a significant effect on structures,the ejecta,and the propagation of shock waves in soil.Thus,the model of the soil to study these phenomena must be carefully selected.However their effect on the diameter of a crater is insignificant.展开更多
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
文摘A numerical approach is presented to study the explosion-induced pressure load on an underground rock chamber wall and its resultant damage to the rock chamber.Numerical simulations are carried out by using a modified version of the commercial software AUTODYN.Three different criteria,i.e.a peak particle velocity (PPV) criterion,an effective strain (ES) criterion,and a damage criterion,are employed to examine the explosion-induced damaged zones of the underground rock chamber.The results show that the charge chamber geometry,coupling condition and charge configuration affect significantly the dynamic pressure exerted on the rock chamber wall.Thus the chamber is damaged.An inaccurate approximation of pressure boundary ignoring the influences of these factors would result in an erroneous prediction of damaged area and damage intensity of the charge chamber.The PPV criterion yields the largest damaged zone while the ES criterion gives the smallest one.The presented numerical simulation method is superior in consideration of the chamber geometry,loading density,coupling condition and rock quality.The predicted damage intensity of rock mass can be categorized quantitatively by an isotropic damage scalar.Safe separation distance of adjacent chambers for a specific charge weight is also estimated.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 51527810,51679249, 12002171 and 51909120)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0312)。
文摘The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.
基金Project(51378498)supported by the National Natural Science Foundation of ChinaProject(BK20141066)supported the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(SKLGDUEK1208)supported by State Key Laboratory for Geo Mechanics and Deep Underground Engineering(China University of Mining & Technology),ChinaProject(DPMEIKF201301)supported by State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact(PLA University of Science and Technology),China
文摘It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.
基金funded by the National Natural Science Foundation of China(Grant No.52279120).
文摘Calculating the parameters of the ground shock induced by an underground explosion is a complex energy coupling problem.It is difficult to establish a unified ground shock coupling law from limited test data.This paper summarizes the research results obtained at home and abroad and systematically analyzes the coupling mechanism of craters formed by an underground explosion and the ground shock.The differences between the concepts of"closed-explosion critical depth"and"equivalent closed-explosion critical depth"are clearly explained.The spreading of the ground shock energy is attributed to the explosive expansion of the air cavity,revealing a linear relationship between the volume of the cavity region(or the volume of the crack region)and the ground shock energy associated with the underground explosion.The proportionality factor is related to the mechanical properties of the medium and is independent of the magnitude of the explosion equivalent.Based on this,a theoretical calculation formula and conversion method for the ground shock coupling coefficient were established.Explosion tests were conducted in clay and Plexiglass under varying burial depths.The test results were consistent with the theoretically calculated results.Our study provides a theoretical basis for the design of explosion-resistant structures in underground engineering.
文摘Over the past half century, I have maintained research connections with Russian scientists during investigations in seismology and mineral physics. These studies have focused on detection and discrimination of underground nuclear explosions and measurements of the physical properties of minerals at high pressures and temperatures. During this period, I have also visited many research laboratories in Russia, including Moscow, Chernogolovka, Novosibirsk and St. Petersburg. The objective of this paper is to relate this history.
文摘In this paper, we have studied the waveforms of background noise in a seismograph and set up an AR model to characterize them. We then complete the modeling and the automatic recognition program. Finally, we provide the results from automatic recognition and the manual recognition of the first motion for 25 underground explosions.
基金Foundation of Verification Researches for Army Control Technology (513310101).
文摘Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.
文摘The contained underground explosion (CUE) usually generates huge number of aftershocks. This kind of after-shocks induced by three CUEs was investigated in the paper. The conclusions show that the duration of aftershock waveforms are rather short, 70 percent of them range from 2 to 7; the occurrences of the aftershocks conform to negative power function, which has the power of -1.6. The aftershock sequence attenuates a little bit faster, with power of -1.0, within two weeks of post-explosions. During the early stage of post-explosions the aftershocks show up in a cluster, however, they usually show up individually during the late stage of post-explosions. The number of aftershocks generated by the compatible explosions differs by several times because of different me-dium and geological structure; within one month after an explosion with Richater magnitude of 5.5, the number of aftershocks attenuates to the background. Hereafter there are still tiny numbers of aftershocks.
基金The authors wish to thank the help received from Amelia Campos for the English revision.The financial support of the CONICET(Argentina)and National Universities of Cuyo and Tucuman is gratefully acknowledged.Special acknowledgements are extended to the reviewers of the first version of the paper because their useful suggestions led to improvements of the work.
文摘Much effort has been dedicated to the study of underground explosions because they pose a major threat to people and structures below or above the ground.In this regard,it is especially important to model the propagation of blast waves in soil and their effects on structures.The main phenomena caused by underground explosive detonation that must be addressed are crater or camouflet formation,shock wave and elastic–plastic wave propagation in soil,and soil-structure interaction.These phenomena can be numerically simulated using hydrocodes,but much care must be taken to obtain reliable results.The objective of this study is to analyze the ability of a hydrocode and simple soil models that do not require much calibration to approximately reproduce experimental and empirical results related to different buried blast events and to provide general guidelines for the simulation of this type of phenomena.In this regard,crater formation,soil ejecta,blast wave propagation in soil,and their effects on structures below and above the ground are numerically simulated using different soil models and parameters;the results are analyzed.The properties of soil have a significant effect on structures,the ejecta,and the propagation of shock waves in soil.Thus,the model of the soil to study these phenomena must be carefully selected.However their effect on the diameter of a crater is insignificant.