In the cold regions of northern China, incidents of municipal underground gas pipeline rupture and leakage occur quite fi-equently, aaost often in winter. To prevent harm to citizen safety and property, analysis of th...In the cold regions of northern China, incidents of municipal underground gas pipeline rupture and leakage occur quite fi-equently, aaost often in winter. To prevent harm to citizen safety and property, analysis of the causes of such cracking and leakage is therefore valuable. Two incident analyses are discussed here and the reasons why most of these types of cases occur dttring winter are clarified. Fhe effects of vehicle loadings above buried pipelines are calculated and compared with the effects and calculations of frost heaving forces. We demonstrate thtit when the soil layer above a pipeline freezes rapidly, the soil generates repeated frost heaving, which exerts heaving forces on the pipeline that can result in fatigue crack propagation and ultimate pipeline failure. Therefore, the incident induced 9y frost heaving is one of the primary reasons of gas pipeline failure. Based on these analyses, we present some recommendations pertaining to the proper design, construction, and management of gas pipelines.展开更多
Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of the...Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.展开更多
基金supported by the National Natural Science Foundation of China (NNSF) (No. 10472020)the Special Foundation of Dalian University of Technology (DUT) (DUTTX2009-103)
文摘In the cold regions of northern China, incidents of municipal underground gas pipeline rupture and leakage occur quite fi-equently, aaost often in winter. To prevent harm to citizen safety and property, analysis of the causes of such cracking and leakage is therefore valuable. Two incident analyses are discussed here and the reasons why most of these types of cases occur dttring winter are clarified. Fhe effects of vehicle loadings above buried pipelines are calculated and compared with the effects and calculations of frost heaving forces. We demonstrate thtit when the soil layer above a pipeline freezes rapidly, the soil generates repeated frost heaving, which exerts heaving forces on the pipeline that can result in fatigue crack propagation and ultimate pipeline failure. Therefore, the incident induced 9y frost heaving is one of the primary reasons of gas pipeline failure. Based on these analyses, we present some recommendations pertaining to the proper design, construction, and management of gas pipelines.
文摘Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.