One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma...One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.展开更多
Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensur...Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×10^(5)m^(3)and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage.展开更多
The severity of climate change and global warming necessitates the need for a transition from traditional hydrocarbon-based energy sources to renewable energy sources.One intrinsic challenge with renewable energy sour...The severity of climate change and global warming necessitates the need for a transition from traditional hydrocarbon-based energy sources to renewable energy sources.One intrinsic challenge with renewable energy sources is their intermittent nature,which can be addressed by transforming excess energy into hydrogen and storing it safely for future use.To securely store hydrogen underground,a comprehensive knowledge of the interactions between hydrogen and residing fluids is required.Interfacial tension is an important variable influenced by cushion gases such as CO_(2) and CH4.This research developed explicit correlations for approximating the interfacial tension of a hydrogen–brine mixture using two advanced machine-learning techniques:gene expression programming and the group method of data handling.The interfacial tension of a hydrogen–brine mixture was considered to be heavily influenced by temperature,pressure,water salinity,and the average critical temperature of the gas mixture.The results indicated a higher performance of the group method of data handling-based correlation,showing an average absolute relative error of 4.53%.Subsequently,Pearson,Spearman,and Kendall methods were used to assess the influence of individual input variables on the outputs of the correlations.Analysis showed that the temperature and the average critical temperature of the gas mixture had considerable inverse impacts on the estimated interfacial tension values.Finally,the reliability of the gathered databank and the scope of application for the proposed correlations were verified using the leverage approach by illustrating 97.6%of the gathered data within the valid range of the Williams plot.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276048)
文摘One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.
文摘Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×10^(5)m^(3)and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage.
文摘The severity of climate change and global warming necessitates the need for a transition from traditional hydrocarbon-based energy sources to renewable energy sources.One intrinsic challenge with renewable energy sources is their intermittent nature,which can be addressed by transforming excess energy into hydrogen and storing it safely for future use.To securely store hydrogen underground,a comprehensive knowledge of the interactions between hydrogen and residing fluids is required.Interfacial tension is an important variable influenced by cushion gases such as CO_(2) and CH4.This research developed explicit correlations for approximating the interfacial tension of a hydrogen–brine mixture using two advanced machine-learning techniques:gene expression programming and the group method of data handling.The interfacial tension of a hydrogen–brine mixture was considered to be heavily influenced by temperature,pressure,water salinity,and the average critical temperature of the gas mixture.The results indicated a higher performance of the group method of data handling-based correlation,showing an average absolute relative error of 4.53%.Subsequently,Pearson,Spearman,and Kendall methods were used to assess the influence of individual input variables on the outputs of the correlations.Analysis showed that the temperature and the average critical temperature of the gas mixture had considerable inverse impacts on the estimated interfacial tension values.Finally,the reliability of the gathered databank and the scope of application for the proposed correlations were verified using the leverage approach by illustrating 97.6%of the gathered data within the valid range of the Williams plot.