Traffic management in underground mines,especially on production ramps,is a difficult problem to optimize and control.Most operations use one of a few common policies;e.g.,the so-called ‘‘lock-out" and‘‘loade...Traffic management in underground mines,especially on production ramps,is a difficult problem to optimize and control.Most operations use one of a few common policies;e.g.,the so-called ‘‘lock-out" and‘‘loaded-vehicle-priority" policies.The work presented in this paper uses discrete-event simulation to study the efficiency of multiple policies.Based on simulation results,an improvement to the common lock-out policy is proposed.This new policy utilizes the rules of the lock-out policy but integrates an option that allows a group of vehicles to be given temporary priority in a certain direction of travel.Quantitative results are provided and,based on these,a systematic technique for ramp design that aims to optimize the efficiency of underground mine ramp traffic flow is described.展开更多
Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a tran...Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a transporter of ore. This paper proposes a distributed system that realizes the excavation and transport functions with separated vehicles, an excavator and a transporter. In addition, this research proposes a mining map and configurations suitable for the proposed distributed system. To evaluate the productivity of the proposed system, a simulation environment has been developed. Analysis using the simulator reveals what performance factors of the excavator and the transporter have large impacts on the productivity. Simulation results also demonstrate the difference of potential between LHD system and the distributed system that can be explained based on their functions allocation.展开更多
基金funded by the Natural Science and Engineering Research Council of Canada (NSERC) under project CRDPJ 44SBO4-12funding provided by Barrick Gold Corporation and Peck Tech Consulting Ltd
文摘Traffic management in underground mines,especially on production ramps,is a difficult problem to optimize and control.Most operations use one of a few common policies;e.g.,the so-called ‘‘lock-out" and‘‘loaded-vehicle-priority" policies.The work presented in this paper uses discrete-event simulation to study the efficiency of multiple policies.Based on simulation results,an improvement to the common lock-out policy is proposed.This new policy utilizes the rules of the lock-out policy but integrates an option that allows a group of vehicles to be given temporary priority in a certain direction of travel.Quantitative results are provided and,based on these,a systematic technique for ramp design that aims to optimize the efficiency of underground mine ramp traffic flow is described.
文摘Recent years, underground mining method is becoming popular because of its potentially high productivity and efficiency. In this method, a mining machinery; load haul dump(LHD), is used as both an excavator and a transporter of ore. This paper proposes a distributed system that realizes the excavation and transport functions with separated vehicles, an excavator and a transporter. In addition, this research proposes a mining map and configurations suitable for the proposed distributed system. To evaluate the productivity of the proposed system, a simulation environment has been developed. Analysis using the simulator reveals what performance factors of the excavator and the transporter have large impacts on the productivity. Simulation results also demonstrate the difference of potential between LHD system and the distributed system that can be explained based on their functions allocation.