期刊文献+
共找到4,482篇文章
< 1 2 225 >
每页显示 20 50 100
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
1
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 Artificial ground freezing underground mining Sustainable mining THERMOSYPHON Air insulation Cold regions
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
2
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 underground coal mining Roof fall Fuzzy logic Genetic algorithm
下载PDF
Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring
3
作者 Xugang Lian Lifan Shi +2 位作者 Weiyu Kong Yu Han Haodi Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期173-186,共14页
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining... The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining. 展开更多
关键词 underground mining in mountain area Residual subsidence GNSS online monitoring Mathematical model Subsidence prediction
下载PDF
Evaluation of Convolutional-Long Short-Term Memory Model in Predicting Surface Displacement of Underground Mines
4
作者 Saviour Mantey Yao Yevenyo Ziggah Isaac Selasi Kojo Attipoe 《Advances in Remote Sensing》 2024年第3期73-88,共16页
Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise t... Surface stability is essential in underground mines health management systems. Unexpected Surface displacement in underground mines could lead to loss of lives, injuries, and economic losses. To reduce or neutralise the adverse effects of surface displacement, it is vital to monitor and accurately predict them and unravel their mechanisms. In recent years, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) have proven effective in predicting complex problems. However, CNN neglects the dynamic dependency of the input in the temporal dimension, which affects surface displacement features. The Convolutional-LSTM model can dynamically learn the temporal dependency among input features via the feedback connections in the LSTM to improve accurate captures of surface displacement features. This study focused on evaluating the C-LSTM model in predicting surface displacement of underground mines and assessed the predictive capabilities and generalisation strength of using hybridised ANN models. Geodetic and geotechnical data gathered from a Gold Mine in Ghana was used. The three models were tested on experimental data collected at Monitoring Scan Point 3. It was observed from the prediction output that all the methods could provide applicable and practical results. However, using indicators like root mean square error (RMSE) and correlation coefficient (R) in assessing the output of the prediction, the C-LSTM had the best prediction output. This study contributes to the advancement of accurate and efficient prediction of surface displacement of underground mines, ultimately enhancing and assisting safety operations. 展开更多
关键词 ANN CNN LSTM C-LSTM underground Mines Surface Displacement
下载PDF
Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques 被引量:1
5
作者 Alberto Fernández JoséA.Sanchidrián +3 位作者 Pablo Segarra Santiago Gómez Enming Li Rafael Navarro 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期555-571,共17页
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for... A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations. 展开更多
关键词 Drill monitoring technology Rock mass characterization underground mining Similarity metrics of binary vectors Structural rock factor Machine learning
下载PDF
Fire behavior of mining vehicles in underground hard rock mines 被引量:4
6
作者 Hansen Rickard 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期627-634,共8页
The results from a number of investigations and fire experiments are presented and analyzed in order to characterize the fire behavior of mining vehicles in underground hard rock mines. The analysis also includes fire... The results from a number of investigations and fire experiments are presented and analyzed in order to characterize the fire behavior of mining vehicles in underground hard rock mines. The analysis also includes fire safety and fire protection measures with respect to the mining vehicle fire behavior.Earlier studies on fires in underground hard rock mines have shown that vehicles or mobile equipment are the dominant sources of fire. A better knowledge about the fire behavior of vehicles in underground hard rock mines is therefore needed. During the analysis the direction and flow rate of the ventilation in a drift was found to have a significant impact on the fire behavior, causing for example flame tilt with rapid fire spread. The shielded sections of a vehicle will be less affected by the ventilation flow resulting in for example a decreased flame spread. It was also found that spray fires may result in considerable heat release rate but are generally of shorter duration and will not make any significant contributions to the overall heat release rate of the fully developed vehicle fire. The fire duration of a loader tire from a full-scale fire experiment was found to be at least 200 min and will largely determine the total fire duration of the vehicle. A different scenario with different conditions with for example a slower flame spread resulted in an even longer fire duration. The radiative and convective fraction will be a key factor when determining the heat transfer mechanisms involved in a fire and will vary from material to material.Calculations show that the radiative fraction of the tire fires on two mining vehicles is significantly lower than found in earlier experiments. The design and construction of the mining vehicle will have an important impact on the fire behavior and could possibly mitigate the consequences of a fire and allow fire personnel to extinguish a fire that otherwise would have had a too high heat release rate. 展开更多
关键词 Fire behavior mining vehicle underground mine Full-scale fire experiments
下载PDF
Evaluation of the impact of commodity price change on mine plan of underground mining 被引量:2
7
作者 Salama Abubakary Nehring Micah Greberg Jenny 《International Journal of Mining Science and Technology》 CSCD 2015年第3期375-382,共8页
Fluctuations in commodity prices should influence mining operations to continually update and adjust their mine plans in order to capture additional value under new market conditions. One of the adjustments is the cha... Fluctuations in commodity prices should influence mining operations to continually update and adjust their mine plans in order to capture additional value under new market conditions. One of the adjustments is the change in production sequencing. This paper seeks to present a method for quantifying the net present value(NPV) that may be directly attributed to the change in commodity prices. The evaluation is conducted across ten copper price scenarios. Discrete event simulation combined with mixed integer programming was used to attain a viable production strategy and to generate optimal mine plans. The analysis indicates that an increase in prices results in an increased in the NPV from$96.57M to $755.65M. In an environment where mining operations must be striving to gain as much value as possible from the rights to exploit a finite resource, it is not appropriate to keep operating under the same mine plan if commodity prices alter during the course of operations. 展开更多
关键词 Mine planning underground mining Commodity price Discrete event simulation Mixed integer programming
下载PDF
Safety analysis of Sormeh underground mine to improve sublevel stoping stability
8
作者 Mostafa Hosseini Amin Azhari +1 位作者 Rahman Lotfi Alireza Baghbanan 《Deep Underground Science and Engineering》 2023年第2期173-187,共15页
In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of... In underground mines,sublevel stoping is used among a variety of different methods for mining an orebody,which creates large underground openings.In this case,the stability of these openings is affected by a number of factors,including the geometrical characteristics of the rock and mining-induced stresses.In this study,a sensitivity analysis was conducted with the numerical,squat pillar,and Mathews stability methods using the Taguchi technique to properly understand the influence of geometric parameters and stress on stope stability according to Sormeh underground mine data.The results show a full factorial analysis is more reliable since stope stability is a complex process.Furthermore,the numerical results indicate that overburden stress has the most impact on stope stability,followed by stope height.However,the results obtained with Mathews and squat pillar methods show that stope height has the greatest impact,followed by overburden stress and span.It appears that these methods overestimate the impact of stope height.Therefore,it is highly recommended that Mathews and squat pillar methods should not be used in high stope that is divided with several sill pillars.Nonetheless,Mathews method cannot accurately predict how the sill pillar impacts the stope stability.In addition,numerical analysis shows that all geometric parameters affect the roof safety factor,whereas the sill pillar has no significant influence on the safety factor of the hanging wall,which is primarily determined by the stope height–span ratio. 展开更多
关键词 numerical method rib pillar stope stability sublevel stoping underground mining
下载PDF
Mineralogy,microstructures and geomechanics of rock salt for underground gas storage
9
作者 Veerle Vandeginste Yukun Ji +1 位作者 Frank Buysschaert George Anoyatis 《Deep Underground Science and Engineering》 2023年第2期129-147,共19页
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct... Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns. 展开更多
关键词 CREEP hydrogen IMPURITIES rock salt salt solution mining underground gas storage
下载PDF
Optimal mining sequence for coal faces under a bedding slope:insight from landslide prevention
10
作者 LI Qingmiao ZHAO Jianjun +3 位作者 LI Zhichao DENG Jie ZUO Jing LAI Qiyi 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1775-1798,共24页
Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p... Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes. 展开更多
关键词 Bedding rock landslides mining-induced deformation Bedding slope stability underground mining sequences Fractal-based strength reduction method
下载PDF
Smelting,Underground Mining,Smoking,and Lung Cancer:A Case-Control Study in a Tin Mine Area
11
作者 WU KAI-GUO MO CHUNG-ZHENG Department of Preventive Medicine,Guangxi Medical College,Nanning,Guangxi,China FU HUA Department of Occupational Medicine,School of Public Health,Shanghai Medical University,Shanghai,China YU LI-ZHENG Health and Anti-epidemic Station,Dachang Mine,Guangxi,China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1989年第2期98-105,共8页
An increased risk of lung cancer in the Dachang tin mine of Guangxi has been reported.To investigate the factors contributing to the excessive risk of lung cancer,we conducted a matched case-control study in the mine ... An increased risk of lung cancer in the Dachang tin mine of Guangxi has been reported.To investigate the factors contributing to the excessive risk of lung cancer,we conducted a matched case-control study in the mine area and analyzed the effects of multiple factors,such as living and housing conditions,occupational exposure,and smoking,with the methods of conditional logistic regression.The case series consisted of 69 patients with primary bronchial cancer,55 of whom had died.The control series consisted of 138 individuals,55 of whom were deceased.The results showed that the factors contributing to the excessive risk of lung cancer in the mine area related mainly to occupational exposure.The significant risk factors were time of exposure to smelting,time of exposure to underground mining,and age at which underground mining was begun.In study model II where living controls were used,daily consumption of cigarettes was an additional risk factor.Furthermore,there was a synergistic action among these factors.The relation of the risk factors to lung cancer is discussed.1989 Academic Press.Inc. 展开更多
关键词 WORK LUNG Smelting underground mining Smoking and Lung Cancer
下载PDF
3DMine软件在罗河铁矿测量中的应用
12
作者 王世松 《现代矿业》 CAS 2024年第1期57-60,共4页
在地下矿山测量中,3DMine软件具有高效处理数据、直观反映采空区或其他井下巷道实际情况、准确提供充填空间体积与质量等优势。通过分析3DMine在罗河地下铁矿的建模过程和模型剖面,进一步判断采空区体积以及超欠挖情况。结果表明,相较... 在地下矿山测量中,3DMine软件具有高效处理数据、直观反映采空区或其他井下巷道实际情况、准确提供充填空间体积与质量等优势。通过分析3DMine在罗河地下铁矿的建模过程和模型剖面,进一步判断采空区体积以及超欠挖情况。结果表明,相较于传统测量方式,3DMine软件能更加便捷直观地分析矿山数据,并且各类数据利用率也较高。同时也证明了3DMine矿业软件在矿山生产过程中具备巨大优势,并为地下矿山测量技术的发展提供了有益参考。 展开更多
关键词 3DMine 地下铁矿 三维模型 矿山测量技术
下载PDF
A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines 被引量:5
13
作者 Chang Ping Xu Guang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期831-838,共8页
The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines ... The increasing use of diesel-powered equipment in confined spaces(underground mines) has the potential to over expose underground miners under the threat of diesel particulate matter(DPM). Miners in underground mines can be exposed to DPM concentrations far more than works in other industries. A great number of animal and epidemiological studies have shown that both short-term and long-term DPM exposure have adverse health effect. Based on reviews of related studies, especially some recent evidence, this paper investigated the long and short-term health effects based on animal studies and epidemiological studies. The exposure-response relationship studies were also explored and compared to the current DPM regulation or standards in some countries. This paper found that the DPM health effect studies specifically for miners are not sufficient to draw solid conclusions, and a recommendation limit of DPM concentration can be put in place for better protection of miners from DPM health risk. Current animal studies lack the use of species that have similar lung functions as human for understanding the cancer mode of action in human. And finally, the DPM health hazard will continue to be a challenging topic before the mode of action and reliable exposure-response relationship are established. 展开更多
关键词 Diesel PARTICULATE MATTER (DPM) underground mines LUNG cancer Exposure-response RELATIONSHIP
下载PDF
Application of open-pit and underground mining technology for residual coal of end slopes 被引量:9
14
作者 CHE, Zhaoxue YANG, Hong 《Mining Science and Technology》 EI CAS 2010年第2期266-270,共5页
Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining tech... Given the conditions of residual coal from the boundary of a flat dipping open-pit mine,which uses strip areas mining and inner dumping with slope-covering,we propose an open-pit and underground integrated mining technology for residual coal of end slopes.In the proposal a conveyance road and ventilation conveyance near the slope are built,corresponding to the pit mining area and the surface coal mine dump,as well as an interval haulage tunnel and air-inlet tunnel.The outcome shows that such mining method may reduce the effect to slope stability from underground mining,it does not affect the dumping advance and has a high recovery rate of residual coal resources.The working face is timbered by single hydraulic props,transported by a scraper conveyor and supported by coal walls.This method of mining is one of layered top coal caving,with high resource recovery,low production cost where positive economic benefit can be realized. 展开更多
关键词 integrated open-pit and underground mining end-slope resource recovery economic benefit surface coal mine
下载PDF
Spatial context in the calculation of gas emissions for underground coal mines 被引量:4
15
作者 Patrick Booth Heidi Brown +1 位作者 Jan Nemcik Ren Ting 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期787-794,共8页
The prediction of gas emissions arising from underground coal mining has been the subject of extensive research for several decades, however calculation techniques remain empirically based and are hence limited to the... The prediction of gas emissions arising from underground coal mining has been the subject of extensive research for several decades, however calculation techniques remain empirically based and are hence limited to the origin of calculation in both application and resolution. Quantification and management of risk associated with sudden gas release during mining(outbursts) and accumulation of noxious or combustible gases within the mining environment is reliant on such predictions, and unexplained variation correctly requires conservative management practices in response to risk. Over 2500 gas core samples from two southern Sydney basin mines producing metallurgical coal from the Bulli seam have been analysed in various geospatial context including relationships to hydrological features and geological structures. The results suggest variability and limitations associated with the present traditional approaches to gas emission prediction and design of gas management practices may be addressed using predictions derived from improved spatial datasets, and analysis techniques incorporating fundamental physical and energy related principles. 展开更多
关键词 GAS emission prediction Spatial analysis underground COAL mining Risk management GREENHOUSE GAS CLIMATE
下载PDF
Stability of boundary pillars in transition from open pit to underground mining 被引量:10
16
作者 赵兴东 李连崇 +1 位作者 唐春安 张洪训 《Journal of Central South University》 SCIE EI CAS 2012年第11期3256-3265,共10页
Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equi... Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground. 展开更多
关键词 boundary pillar STABILITY underground mining numerical simulation case study
下载PDF
Optimization model of unascertained measurement for underground mining method selection and its application 被引量:6
17
作者 刘爱华 董蕾 董陇军 《Journal of Central South University》 SCIE EI CAS 2010年第4期744-749,共6页
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f... An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method. 展开更多
关键词 mining engineering underground mining method optimization model unascertained measurement theory information entropy
下载PDF
Quantitative hazard assessment for Zonguldak Coal Basin underground mines 被引量:3
18
作者 H.H.Erdogan H.S.Duzgun A.S.Selcuk-Kestel 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第3期453-467,共15页
Underground coal mining is one of the most dangerous occupations throughout the world.The reasons behind an underground occupational accident are too complex to analyze mainly due to many uncertainties which may arise... Underground coal mining is one of the most dangerous occupations throughout the world.The reasons behind an underground occupational accident are too complex to analyze mainly due to many uncertainties which may arise from geological,operational conditions of the mine or individual characteristics of employees.This study proposes implementing a quantitative methodology for the analysis and assessment of hazards associated with occupational accidents.The application of the proposed approach is performed on the mines of Turkish Hard Coal Enterprises(TTK).The accidents in TTK between the years 2000 and 2014 are firstly statistically analyzed with respect to the number,type and location of accidents,age,experience,education level and main duty of the casualties and also injuries resulting from such accidents.The hazards are classified as individual,operational and locational hazards and quantified using contingency tables,conditional and total probability theorems.Lower and upper boundaries of hazards are determined and event trees for each hazard class are prepared.Total hazard evaluation results show that Armutcuk,Karadon and Uzulmez mines have relatively high hazard levels while Amasra and Kozlu mines have relatively lower hazard values. 展开更多
关键词 underground COAL mining OCCUPATIONAL accidents HAZARD assessment CONTINGENCY TABLES Zonguldak COAL Basin
下载PDF
Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms 被引量:5
19
作者 Chengyu Xie Hoang Nguyen +2 位作者 Xuan-Nam Bui Van-Thieu Nguyen Jian Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1452-1465,共14页
Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the ... Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the energy demand.This requirement has led underground coal mines to go deeper with more difficult conditions,especially the mining hazards,such as large deformations,rockburst,coal burst,roof collapse,to name a few.Therefore,this study aims at investigating and predicting the stability of the roadways in underground coal mines exploited by longwall mining method,using various novel intelligent techniques based on physics-based optimization algorithms(i.e.multi-verse optimizer(MVO),equilibrium optimizer(EO),simulated annealing(SA),and Henry gas solubility optimization(HGSO)) and adaptive neuro-fuzzy inference system(ANFIS),named as MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSOANFIS models.Accordingly,162 roof displacement events were investigated based on the characteristics of surrounding rocks,such as cohesion,Young’s modulus,density,shear strength,angle of internal friction,uniaxial compressive strength,quench durability index,rock mass rating,and tensile strength.The MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSO-ANFIS models were then developed and evaluated based on this dataset for predicting roof displacements in roadways of underground mines.The results indicated that the proposed intelligent techniques could accurately predict the roof displacements in roadways of underground mines with an accuracy in the range of 83%-92%.Remarkably,the SA-ANFIS model yielded the most dominant accuracy(i.e.92%).Based on the accurate predictions from the proposed techniques,the reinforced solutions can be timely suggested to ensure the stability of roadways during exploiting coal,especially in the underground coal mines exploited by the longwall mining. 展开更多
关键词 Roof displacement Longwall mining underground mine Physics-based optimization Risk assessment mining hazards
下载PDF
The future of underground spatial planning and the resulting potential risks from the point of view of mining subsidence engineering 被引量:5
20
作者 Carolina Brücker Axel Preuβe 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期93-98,共6页
The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expe... The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expected to take place only until 2038.The so-called long-term liabilities of the mine operators in Germany include,among other things,the long-term guarantee of stability and thus the monitoring of ground motion.So far,the economic use of underground mining in Germany was mainly the supply of raw materials.In the future,the underground storage of compressed air,methane or hydrogen will play an important role in renewable energy supply and climate change.Therefore,the underground storage space will become more important and the spatial planning is essential to ensure availability of safe underground openings for the various options of environmentally friendly energy storage.However,this renewed usage of underground openings may also bring new and sometimes unknown challenges of geomechanical influence.The aftermath of hard coal and lignite mining will be an increasing challenge in mining subsidence engineering.On the other hand,new possibilities due to underground spatial planning may lead to subsidence and/or heaving of the upper surface. 展开更多
关键词 mining SURVEYING underground spatial planning mining engineering Renewable energies
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部