A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with ...A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.展开更多
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall...Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.展开更多
The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. ...The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.展开更多
Shanxi,Shaanxi,Inner Mongolia,Ningxia,and Gansu(hereafter generally referred as "the Western Area")are major coal-producing areas in China due to rich coal resources and good mining conditions.However,the We...Shanxi,Shaanxi,Inner Mongolia,Ningxia,and Gansu(hereafter generally referred as "the Western Area")are major coal-producing areas in China due to rich coal resources and good mining conditions.However,the Western Area has a serious water shortage.The surface evaporation is huge and a great amount of mine water generated in coal mining is evaporated and lost after discharging to surface.In order to protect and utilize the water resources during large-scale coal mining in the Western Area,Shenhua Group has put forward a technological idea to store mine water in underground mined areas and successfully researched and developed the coal mine underground reservoir technology by solving the technical difficulties of water source prediction,reservoir site selection,reservoir capacity design,dam construction,safety guarantee,water quality control and so on through20 years of exploration.Now Shenhua Group has successfully established a batch of reservoir in the Shendong Mining Area,obtaining great economic and social benefits.The technology is also extended to other western mining areas,providing an effective path for harmonic mining of coal and water resources in western China.展开更多
基金The research presented in this article was performed within the work"Conducting an exsitu experiment of underground coal gasification with a mineral interlayer"commissioned and funded by the Silesian University of Technology in Gliwice,Department of Applied Geology,by order sign ZP/018521/18/ZZ/01987/18.
文摘A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%.
基金Supported by the PetroChina Science and Technology Major Project(2019E-25)
文摘Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.
基金Supported by National Natural Science Foundation of China(5 990 60 14 )
文摘The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production.
文摘Shanxi,Shaanxi,Inner Mongolia,Ningxia,and Gansu(hereafter generally referred as "the Western Area")are major coal-producing areas in China due to rich coal resources and good mining conditions.However,the Western Area has a serious water shortage.The surface evaporation is huge and a great amount of mine water generated in coal mining is evaporated and lost after discharging to surface.In order to protect and utilize the water resources during large-scale coal mining in the Western Area,Shenhua Group has put forward a technological idea to store mine water in underground mined areas and successfully researched and developed the coal mine underground reservoir technology by solving the technical difficulties of water source prediction,reservoir site selection,reservoir capacity design,dam construction,safety guarantee,water quality control and so on through20 years of exploration.Now Shenhua Group has successfully established a batch of reservoir in the Shendong Mining Area,obtaining great economic and social benefits.The technology is also extended to other western mining areas,providing an effective path for harmonic mining of coal and water resources in western China.