The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was res...The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was researched and the energy transfer was added to the energy equations.The flow field and the vaporization were calculated coupled.The initial ignition process of the underwater solid rocket motor is obtained and the vaporization influence to the underwater launching is analyzed.The "neck","inverted jet" and "eruption" phenomenon of the bubble are observed.The bubble increases more rapidly because the steam mass added to the fuel.The temperature is lower considering the vaporization because the steam enthalpy is lower than the fuel enthalpy and the flow field of the initial ignition of the underwater-launching solid rocket motor is accordant well to the reference.展开更多
- This article briefs how to improve the holding power of a drilling vessel's anchor and to remove those unreasonable structures by such a technology - underwater-explosion technology. The article gives details of...- This article briefs how to improve the holding power of a drilling vessel's anchor and to remove those unreasonable structures by such a technology - underwater-explosion technology. The article gives details of the structure, characteristics and applications of a rocket-launched anchor; as well as the principle, properties, applications of directional explosion cutting.展开更多
In this paper, a study of the high-speed gas jet of a rocket nozzle underwater was carried out using commercially available CFD software FLUENT with it’s user-defined-function. The volume of fluid technique based on ...In this paper, a study of the high-speed gas jet of a rocket nozzle underwater was carried out using commercially available CFD software FLUENT with it’s user-defined-function. The volume of fluid technique based on finite volume method was adopted to solve the time-dependent multiphase flow including a compressible phase, and the PISO algorithm was included. The computed results show that this problem was calculated successfully. The gas bubble behind the nozzle, and the wave structure existing in highly compressed gas in water were captured accurately.展开更多
为了对水下固体火箭发动机典型具有相变过程的复杂流动问题进行研究,本文依据水-蒸汽相变的热力学原理,建立了蒸发-冷凝过程的判别标准,设计了一种解决水下超音速燃气射流复杂相变过程的计算模型。根据VOF(volume of fluid)模型原理,通...为了对水下固体火箭发动机典型具有相变过程的复杂流动问题进行研究,本文依据水-蒸汽相变的热力学原理,建立了蒸发-冷凝过程的判别标准,设计了一种解决水下超音速燃气射流复杂相变过程的计算模型。根据VOF(volume of fluid)模型原理,通过对基本方程的源项进行修改实现了相变的数值传质、传热过程。经过实验与数值模拟结果的对比分析,验证了该计算模型仿真结果的可行性和可信度,运用该模型完成了典型工况的水下高温、高速燃气射流问题中相变过程的仿真计算,并对其过程进行了分析。仿真结果表明:该模型对解决复杂工况下的相变为题具有很好的适用性,可以为相应的工程问题提供很好的帮助。展开更多
文摘The aim of this investigation is to research the initial ignition of the underwater-launching solid rocket motor.The MIXTURE multiple-phase model was set to simulate the initial ignition.The water vaporization was researched and the energy transfer was added to the energy equations.The flow field and the vaporization were calculated coupled.The initial ignition process of the underwater solid rocket motor is obtained and the vaporization influence to the underwater launching is analyzed.The "neck","inverted jet" and "eruption" phenomenon of the bubble are observed.The bubble increases more rapidly because the steam mass added to the fuel.The temperature is lower considering the vaporization because the steam enthalpy is lower than the fuel enthalpy and the flow field of the initial ignition of the underwater-launching solid rocket motor is accordant well to the reference.
文摘- This article briefs how to improve the holding power of a drilling vessel's anchor and to remove those unreasonable structures by such a technology - underwater-explosion technology. The article gives details of the structure, characteristics and applications of a rocket-launched anchor; as well as the principle, properties, applications of directional explosion cutting.
文摘In this paper, a study of the high-speed gas jet of a rocket nozzle underwater was carried out using commercially available CFD software FLUENT with it’s user-defined-function. The volume of fluid technique based on finite volume method was adopted to solve the time-dependent multiphase flow including a compressible phase, and the PISO algorithm was included. The computed results show that this problem was calculated successfully. The gas bubble behind the nozzle, and the wave structure existing in highly compressed gas in water were captured accurately.
文摘为了对水下固体火箭发动机典型具有相变过程的复杂流动问题进行研究,本文依据水-蒸汽相变的热力学原理,建立了蒸发-冷凝过程的判别标准,设计了一种解决水下超音速燃气射流复杂相变过程的计算模型。根据VOF(volume of fluid)模型原理,通过对基本方程的源项进行修改实现了相变的数值传质、传热过程。经过实验与数值模拟结果的对比分析,验证了该计算模型仿真结果的可行性和可信度,运用该模型完成了典型工况的水下高温、高速燃气射流问题中相变过程的仿真计算,并对其过程进行了分析。仿真结果表明:该模型对解决复杂工况下的相变为题具有很好的适用性,可以为相应的工程问题提供很好的帮助。