With the continuous development and utilization of marine resources,the underwater target detection has gradually become a popular research topic in the field of underwater robot operations and target detection.Howeve...With the continuous development and utilization of marine resources,the underwater target detection has gradually become a popular research topic in the field of underwater robot operations and target detection.However,it is difficult to combine the environmental semantic information and the semantic information of targets at different scales by detection algorithms due to the complex underwater environment.In this paper,a cascade model based on the UGC-YOLO network structure with high detection accuracy is proposed.The YOLOv3 convolutional neural network is employed as the baseline structure.By fusing the global semantic information between two residual stages in the parallel structure of the feature extraction network,the perception of underwater targets is improved and the detection rate of hard-to-detect underwater objects is raised.Furthermore,the deformable convolution is applied to capture longrange semantic dependencies and PPM pooling is introduced in the highest layer network for aggregating semantic information.Finally,a multi-scale weighted fusion approach is presented for learning semantic information at different scales.Experiments are conducted on an underwater test dataset and the results have demonstrated that our proposed algorithm could detect aquatic targets in complex degraded underwater images.Compared with the baseline network algorithm,the Common Objects in Context(COCO)evaluation metric has been improved by 4.34%.展开更多
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). T...A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly.Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target:(a) they cannot eliminate the turbulences of clutter effectively;(b) there may be a high false alarm probability and low detection probability of a track;(c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track,track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target’s existence and estimate its initial state with the least squares method. What’s more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.展开更多
Considering the uncertain effects of temporal and spatial changes in the marine en- vironment on the underwater acoustic environment, we established an ocean-acoustic coupled numerical model and performed a parallel c...Considering the uncertain effects of temporal and spatial changes in the marine en- vironment on the underwater acoustic environment, we established an ocean-acoustic coupled numerical model and performed a parallel calculation. This model incorporated acoustic calcu- lations into the dynamic ocean, thereby achieving a dynamic forecasting and assessment of the acoustic environment. Furthermore, we adopted the ensemble prediction method to predict the vertical structure of temperature in a classic cross-section, the sound speed of the cross-section of the investigated sea area, and transmission losses. We gave the prediction errors of the sound speed profile as well as the 90% probability interval of transmission losses and the uncertainty histograms of the sound speeds, transmission losses, and sonar ranges at different depths and frequencies. The results reflected the influence of marine temporal and spacial variations on the uncertainties of the underwater acoustic environment, and the results also quantified the uncertainties of the underwater acoustic environment parameters. The experimental results indicate that the method used in this study is able to delineate and quantify the uncertainties of the underwater acoustic environment caused by marine dynamic changes.展开更多
In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduce...In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduced in this paper.The under ice underwater acoustic channel is characterized by heavy multipath transmission.Under this model,a parametric array emission method of Pattern signal is derived and the system performance is analyzed.A broadband low frequency sound waves with narrow beam-pattern,which will reduce the interface reflections and suppress the effects of multipath transmission,can be obtained by the emission method.The Songhua River under ice trial results show that there is an anti-multipath property and a higher data rate in the under-ice acoustic channel in proposed approach.展开更多
The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta metho...The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.展开更多
基金supported by the National Natural Science Foundation of China(No.62271199)the Natural Science Foundation of Hunan Province,China(No.2020JJ5170)the Scientific Research Fund of Hunan Provincial Education Department(No.18C0299)。
文摘With the continuous development and utilization of marine resources,the underwater target detection has gradually become a popular research topic in the field of underwater robot operations and target detection.However,it is difficult to combine the environmental semantic information and the semantic information of targets at different scales by detection algorithms due to the complex underwater environment.In this paper,a cascade model based on the UGC-YOLO network structure with high detection accuracy is proposed.The YOLOv3 convolutional neural network is employed as the baseline structure.By fusing the global semantic information between two residual stages in the parallel structure of the feature extraction network,the perception of underwater targets is improved and the detection rate of hard-to-detect underwater objects is raised.Furthermore,the deformable convolution is applied to capture longrange semantic dependencies and PPM pooling is introduced in the highest layer network for aggregating semantic information.Finally,a multi-scale weighted fusion approach is presented for learning semantic information at different scales.Experiments are conducted on an underwater test dataset and the results have demonstrated that our proposed algorithm could detect aquatic targets in complex degraded underwater images.Compared with the baseline network algorithm,the Common Objects in Context(COCO)evaluation metric has been improved by 4.34%.
基金financially supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KGFZD-125-014)the National Natural Science Foundation of China(Grant No.61273334)State Key Laboratory of Robotics Foundation(Grant No.2017-Z05)
文摘A novel efficient track initiation method is proposed for the harsh underwater target tracking environment(heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method(TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly.Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target:(a) they cannot eliminate the turbulences of clutter effectively;(b) there may be a high false alarm probability and low detection probability of a track;(c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track,track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target’s existence and estimate its initial state with the least squares method. What’s more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
基金supported by the China Postdoctoral Science Foundation(20110491884)the General Armament Department Pre-research Project(9140A03060213JB15039)
文摘Considering the uncertain effects of temporal and spatial changes in the marine en- vironment on the underwater acoustic environment, we established an ocean-acoustic coupled numerical model and performed a parallel calculation. This model incorporated acoustic calcu- lations into the dynamic ocean, thereby achieving a dynamic forecasting and assessment of the acoustic environment. Furthermore, we adopted the ensemble prediction method to predict the vertical structure of temperature in a classic cross-section, the sound speed of the cross-section of the investigated sea area, and transmission losses. We gave the prediction errors of the sound speed profile as well as the 90% probability interval of transmission losses and the uncertainty histograms of the sound speeds, transmission losses, and sonar ranges at different depths and frequencies. The results reflected the influence of marine temporal and spacial variations on the uncertainties of the underwater acoustic environment, and the results also quantified the uncertainties of the underwater acoustic environment parameters. The experimental results indicate that the method used in this study is able to delineate and quantify the uncertainties of the underwater acoustic environment caused by marine dynamic changes.
基金supported by the National Natural Science Foundation of China(61471137,61631008)Fok Ying Tung Education Foundation(151007)the 13th Five-Year Plan Communication Information Control and Security Technology Key Laboratory Foundation(61421060301162106001)
文摘In order to meet the demands of underwater acoustic communication in under ice environment,a differential Pattern time delay shift coding underwater acoustic communication method based on parametric array is introduced in this paper.The under ice underwater acoustic channel is characterized by heavy multipath transmission.Under this model,a parametric array emission method of Pattern signal is derived and the system performance is analyzed.A broadband low frequency sound waves with narrow beam-pattern,which will reduce the interface reflections and suppress the effects of multipath transmission,can be obtained by the emission method.The Songhua River under ice trial results show that there is an anti-multipath property and a higher data rate in the under-ice acoustic channel in proposed approach.
文摘The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell' s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by pieccwise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of rcal-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.