期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Hydrodynamic Computation on Moving Base Vertical Launching of an Underwater Missile
1
作者 SHANG Shu-cong ZHANG Yu-wen YUAN Xu-long 《International Journal of Plant Engineering and Management》 2009年第3期174-179,共6页
In order to study the effects of lateral flow on the underwater missile vertical launching process considering the hydrodynamic effect, a horizontal fluid dynamics model was developed. We offered the numerical computa... In order to study the effects of lateral flow on the underwater missile vertical launching process considering the hydrodynamic effect, a horizontal fluid dynamics model was developed. We offered the numerical computation method in this process by using the fluent of CFD ( Computational Fluid Dynamics)software. Based on the specific examples, we carried out the computation of the model's drag coefficient, lift coefficient and pitching moment with its launching process. The computation results agree with the results of the experiment and the error between them is less than 10%. It shows that this computation method is viable and can be used in the system design, and the analysis of missile motion and basic structure intensity. 展开更多
关键词 underwater missile HYDRODYNAMICS lateral flow vertical launching numerical computation
下载PDF
A COUPLING MODEL OF WATER FLOWS AND GAS FLOWS IN EXHAUSTED GAS BUBBLE ON MISSILE LAUNCHED UNDERWATER 被引量:12
2
作者 CHENG Yong-sheng LIU Hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第4期403-411,共9页
The gas and water flows during an underwater missile launch are numerically studied. For the gas flow, the explicit difference scheme of Non-oscillation and Non-free-parameter Dissipation (NND) is utilized to solve th... The gas and water flows during an underwater missile launch are numerically studied. For the gas flow, the explicit difference scheme of Non-oscillation and Non-free-parameter Dissipation (NND) is utilized to solve the Euler equations for compressible fluids in the body-fitted coordinates. For the water flow, the Hess-Smith method is employed to solve the Laplace equation for the velocity potential of irrotational water flows based on the potential theory and the boundary element method. The hybrid Eulerian-Lagrangian formulation for the free boundary conditions is used to compute the changes of the free surface of the exhausted gas bubble in time stepping. On the free surface of the exhausted gas bubble, the matched conditions of both the normal velocities and pressures are satisfied. From the numerical simulation, it is found that the exhausted gas bubble grows more rapidly in the axial direction than in the radial direction and the bubble will shrink at its "neck" finally. Numerical results of the movement of the shock wave and the distribution of the Mach number and the gas pressure within the bubble were presented, which reveals that at some time, the gas flow in the Laval nozzle is subsonic and the gas pressure in the nozzle is very high. Influences of various initial missile velocities and chamber total pressures and water depths on both the time interval when the gas flow in the nozzle is subsonic and the peak of the gas pressure at the nozzle end were discussed. It was suggested that a reasonable adjustment of the chamber total pressure can improve the performance of the engine during the underwater launch of missiles. 展开更多
关键词 exhausted gas bubble Laval nozzle missile launched underwater shock wave gas jet
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部