Marine current turbine(MCT),which is designed for the power supply of underwater mooring platform(UMP),is investigated in this article.To reduce its flow noise,the microgrooved surface is applied at the suction surfac...Marine current turbine(MCT),which is designed for the power supply of underwater mooring platform(UMP),is investigated in this article.To reduce its flow noise,the microgrooved surface is applied at the suction surface of the turbine blades.Comprehensive analyses of the effects of the UMP on MCT with microgrooved surface in different working conditions are presented.The transient turbulent flow field is obtained by incompressible large eddy simulation(LES),and then the Ffowcs Williams and Hawkings(FW-H)acoustic analogy is adopted to forecast the flow noise generated from the pressure fluctuations and loadings of the UMP shell and MCT blade surfaces.The numerical methods are first validated with experimental data and good agreements are obtained.Then,the influence of several key parameters on the performance of the MCT is then systematically studied,including interval distance,angle of pitch and angle of sideslip.For each case,the hydrodynamic parameters(thrust coefficient,torque coefficient and power coefficient),the vortical structures behind the model and the overall sound pressure level(OASPL)directionality are analyzed.Additionally,the noise reduction effect of the microgrooved surface is also presented.The present investigation could provide an overall understanding for the performance of MCT combined with UMP.展开更多
基金supported by the Scientific Research Start-up Fund of Nanjing University of Science and Technology(Grant No.AE89991/383)the National Natural Science Foundation of China(Grant Nos.51809214,10672136 and 61572404).
文摘Marine current turbine(MCT),which is designed for the power supply of underwater mooring platform(UMP),is investigated in this article.To reduce its flow noise,the microgrooved surface is applied at the suction surface of the turbine blades.Comprehensive analyses of the effects of the UMP on MCT with microgrooved surface in different working conditions are presented.The transient turbulent flow field is obtained by incompressible large eddy simulation(LES),and then the Ffowcs Williams and Hawkings(FW-H)acoustic analogy is adopted to forecast the flow noise generated from the pressure fluctuations and loadings of the UMP shell and MCT blade surfaces.The numerical methods are first validated with experimental data and good agreements are obtained.Then,the influence of several key parameters on the performance of the MCT is then systematically studied,including interval distance,angle of pitch and angle of sideslip.For each case,the hydrodynamic parameters(thrust coefficient,torque coefficient and power coefficient),the vortical structures behind the model and the overall sound pressure level(OASPL)directionality are analyzed.Additionally,the noise reduction effect of the microgrooved surface is also presented.The present investigation could provide an overall understanding for the performance of MCT combined with UMP.