期刊文献+
共找到365篇文章
< 1 2 19 >
每页显示 20 50 100
RepDNet:A re-parameterization despeckling network for autonomous underwater side-scan sonar imaging with prior-knowledge customized convolution
1
作者 Zhuoyi Li Zhisen Wang +2 位作者 Deshan Chen Tsz Leung Yip Angelo P.Teixeira 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期259-274,共16页
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo... Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency. 展开更多
关键词 side-scan sonar sonar image despeckling Domain knowledge RE-PARAMETERIZATION
下载PDF
An Underwater Robot Inspection Anomaly Localization Feedback System Based on Sonar Technology
2
作者 Siqiang Cheng Yi Liu +1 位作者 Aibin Tang Libin Yang 《Journal of Electronic Research and Application》 2024年第4期17-21,共5页
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa... This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention. 展开更多
关键词 underwater robots Positioning feedback system sonar real-time tracking
下载PDF
A Novel CCA-NMF Whitening Method for Practical Machine Learning Based Underwater Direction of Arrival Estimation
3
作者 Yun Wu Xinting Li Zhimin Cao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期163-174,共12页
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ... Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions. 展开更多
关键词 direction of arrival(DOA) sonar array data underwater disturbance machine learn-ing canonical correlation analysis(CCA) non-negative matrix factorization(NMF)
下载PDF
YOLOv5-Based Seabed Sediment Recognition Method for Side-Scan Sonar Imagery 被引量:1
4
作者 WANG Ziwei HU Yi +1 位作者 DING Jianxiang SHI Peng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1529-1540,共12页
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ... Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery. 展开更多
关键词 seabed sediment real-time target recognition YOLOv5 model side-scan sonar imagery transfer learning
下载PDF
Underwater Terrain-Aided Navigation Based on Multibeam Bathymetric Sonar Images 被引量:2
5
作者 Ziqi Song Hongyu Bian Adam Zielinski 《Journal of Marine Science and Application》 CSCD 2015年第4期425-433,共9页
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ... Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters. 展开更多
关键词 underwater acoustics terrain-aided navigation sonar images HISTOGRAM autonomous underwater vehicle multibeam bathymetric sonar
下载PDF
Sonar Image Processing System for an Autonomous Underwater Vehicle(AUV)
6
作者 Wen, X. Yuling, W. Weiqing, Zh. 《High Technology Letters》 EI CAS 1995年第1期71-75,共5页
Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections includ... Sonar image processing system is an important intelligent system of Autonomous Un-derwater Vehicle.Based on TMS320C30 high speed DSP,it is used to realize sonar imagecompression and underwater object detections including obstacle recognition in real time.Inthis paper,the software and hardware designs of this system are introduced and the experi-mental results are given. 展开更多
关键词 AUTONOMOUS underwater VEHICLE sonar image processing Digital SIGNAL PROCESSOR
下载PDF
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:8
7
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 underwater OBSTACLE AVOIDANCE real-time pathre-planning A* ALGORITHM sonar image unmanned surface vehicle
下载PDF
DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation 被引量:2
8
作者 ZHAO Xiaohong QIN Rixia +3 位作者 ZHANG Qilei YU Fei WANG Qi HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1089-1096,共8页
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS... In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration. 展开更多
关键词 side-scan sonar(SSS) semantic segmentation dilated convolutions SUPER-RESOLUTION
下载PDF
Multi-beam Sonar and Side-scan Sonar Image Co-registering and Fusing
9
作者 阳凡林 刘经南 赵建虎 《Marine Science Bulletin》 CAS 2003年第1期16-23,共8页
Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated... Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co-registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data. 展开更多
关键词 Multi-beam sonar side-scan sonar Co-registering FUSION
下载PDF
Improving Yolo5 for Real-Time Detection of Small Targets in Side Scan Sonar Images
10
作者 WANG Jianjun WANG Qi +2 位作者 GAO Guocheng QIN Ping HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1551-1562,共12页
Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the t... Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the target for observers.The target feature information of an SSS image is similar to the background information,and a small target has less pixel information;therefore,accu-rately identifying and locating small targets in SSS images is challenging.We collect the SSS images of iron metal balls(with a diameter of 1m)and rocks to solve the problem of target misclassification.Thus,the dataset contains two types of targets,namely,‘ball’and‘rock’.With the aim to enable AUVs to accurately and automatically identify small underwater targets in SSS images,this study designs a multisize parallel convolution module embedded in state-of-the-art Yolo5.An attention mechanism transformer and a convolutional block attention module are also introduced to compare their contributions to small target detection accuracy.The performance of the proposed method is further evaluated by taking the lightweight networks Mobilenet3 and Shufflenet2 as the backbone network of Yolo5.This study focuses on the performance of convolutional neural networks for the detection of small targets in SSS images,while another comparison experiment is carried out using traditional HOG+SVM to highlight the neural network’s ability.This study aims to improve the detection accuracy while ensuring the model efficiency to meet the real-time working requirements of AUV target detection. 展开更多
关键词 side scan sonar images autonomous underwater vehicle multisize parallel convolution module attention mechanism
下载PDF
基于法线微分的3维声呐点云自适应简化方法
11
作者 汪洋 金卓恒 +1 位作者 陈德山 吴兵 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期258-269,共12页
在不损失原始点云数据质量的前提下,大幅约简点云数据量是减少存储空间、降低后期计算强度的重要预处理步骤。针对这一需求,提出了针对水下3维声呐点云数据的自适应简化方法。首先,定义法线微分算子来识别点云中几何尺度的骤变,从而实... 在不损失原始点云数据质量的前提下,大幅约简点云数据量是减少存储空间、降低后期计算强度的重要预处理步骤。针对这一需求,提出了针对水下3维声呐点云数据的自适应简化方法。首先,定义法线微分算子来识别点云中几何尺度的骤变,从而实现原始点云中边界部分点云和主体部分点云的分割。其次,对于点云的边界部分,应用移动最小二乘法来对边界点进行优化,降低噪点的影响,并保持其曲面的几何一致性;基于体素栅格结构,在边界上使用八叉树进行降采样,并在此基础上实施局部最远点采样,在实现均匀简化的同时保证已简化点云的边界部分具有各向同性,有效保留边界部分点云的几何特征信息。再次,对于点云的主体部分,为保持简化后点云整体的各向同性,使用体素中心采样法来减少数据量。然后,通过高斯滤波平滑点云表面,最后,整合简化后的边界点云和主体点云,得到简化结果。实验结果表明,提出的简化方法计算成本低、处理速度快,在与现行典型算法保持一致简化率的情况下,对水下点云数据的简化速度提高了约32%。另外,通过表面密度对比与几何失真分析,证明了提出方法对水下3维点云边界点及整体分布的优化作用。综上,此方法能提高水下作业目标探测效率,得到保留重要几何特征信息并具有各向同性的水下任务目标点云简化结果。 展开更多
关键词 水下点云 3维声呐 点云简化 法线微分 体素栅格
下载PDF
基于被动声呐音频信号的水中目标识别综述 被引量:2
12
作者 徐齐胜 许可乐 +4 位作者 窦勇 高彩丽 乔鹏 冯大为 朱博青 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期649-673,共25页
基于被动声呐音频信号的水中目标识别是当前水下无人探测领域的重要技术难题,在军事和民用领域都应用广泛.本文从数据处理和识别方法两个层面系统阐述基于被动声呐信号进行水中目标识别的方法和流程.在数据处理方面,从基于被动声呐信号... 基于被动声呐音频信号的水中目标识别是当前水下无人探测领域的重要技术难题,在军事和民用领域都应用广泛.本文从数据处理和识别方法两个层面系统阐述基于被动声呐信号进行水中目标识别的方法和流程.在数据处理方面,从基于被动声呐信号的水中目标识别基本流程、被动声呐音频信号分析的数理基础及其特征提取三个方面概述被动声呐信号处理的基本原理.在识别方法层面,全面分析基于机器学习算法的水中目标识别方法,并聚焦以深度学习算法为核心的水中目标识别研究.本文从有监督学习、无监督学习、自监督学习等多种学习范式对当前研究进展进行系统性的总结分析,并从算法的标签数据需求、鲁棒性、可扩展性与适应性等多个维度分析这些方法的优缺点.同时,还总结该领域中较为广泛使用的公开数据集,并分析公开数据集应具备的基本要素.最后,通过对水中目标识别过程的论述,总结目前基于被动声呐音频信号的水中目标自动识别算法存在的困难与挑战,并对该领域未来的发展方向进行展望. 展开更多
关键词 被动声呐信号 水中目标自动识别 深度学习 有监督学习 自监督学习
下载PDF
基于ZYNQ的轻量化YOLOv5声呐图像目标检测算法及实现 被引量:1
13
作者 赵冬冬 谢墩翰 +3 位作者 陈朋 梁荣华 沈伊 郭新新 《光电工程》 CAS CSCD 北大核心 2024年第1期55-66,共12页
针对声呐图像存在的模糊、样本量不足的现象,本文提出一种基于YOLOv5的声呐图像目标检测改进算法。利用几何滤波、垂直翻转等方法,对声呐图像数据集进行数据增强。添加融合注意力机制模块,使算法更好地关注声呐图像小目标的特征。同时,... 针对声呐图像存在的模糊、样本量不足的现象,本文提出一种基于YOLOv5的声呐图像目标检测改进算法。利用几何滤波、垂直翻转等方法,对声呐图像数据集进行数据增强。添加融合注意力机制模块,使算法更好地关注声呐图像小目标的特征。同时,针对目前大多数目标检测算法运行在云端,无法做到实时性声呐图像检测的问题,本文利用替换轻量级网络和NCNN边端移植技术,同时在颈部网络中采用GSConv模块,将算法成功移植到ZYNQ平台,实现声呐图像的嵌入式端实时检测。实验表明,本文提出的算法在降低了56%参数量的同时,在map50和map50-95上分别提高2.2%和2.5%。改进后的算法性能提升明显,证明所提出的方法在轻量化声呐图像目标检测任务上具有一定的可行性与有效性。 展开更多
关键词 水下目标检测 YOLO ZYNQ 声呐图像 深度学习 轻量化
下载PDF
基于卷积神经网络的声呐图像水下目标检测综述
14
作者 李新宇 张家利 +2 位作者 孙玉山 万刚 张晗 《船舶工程》 CSCD 北大核心 2024年第9期87-98,共12页
声呐探测技术作为水下探测的主要手段之一,在海洋环境中具有广泛的应用,随着卷积神经网络(CNN)在计算机视觉领域表现出卓越的性能,该技术越来越受到研究人员的重视。文章综述了卷积神经网络在声呐图像水下目标检测中的应用与发展,重点... 声呐探测技术作为水下探测的主要手段之一,在海洋环境中具有广泛的应用,随着卷积神经网络(CNN)在计算机视觉领域表现出卓越的性能,该技术越来越受到研究人员的重视。文章综述了卷积神经网络在声呐图像水下目标检测中的应用与发展,重点讨论基于CNN的典型水下目标检测方法,包括基于候选区域与回归的检测算法在声呐图像上的改进与应用,并分析各类网络模型在处理声呐图像特有问题上的创新策略,如小样本检测、小目标检测及CNN与传统算法融合等。最后总结了当前基于CNN的水下目标检测面临的挑战,并预测该领域技术发展趋势。 展开更多
关键词 卷积神经网络 声呐图像 水下目标检测 深度学习
下载PDF
基于非负矩阵分解的双曲调频信号目标回波增强
15
作者 崔小斌 李淑秋 +5 位作者 李宇 李子高 孙飞虎 迟骋 金盛龙 王冠群 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1273-1279,共7页
双曲调频信号是主动声呐中常用的多普勒不敏感信号。在实际使用中,由于信道变化和混响影响,目标回波较弱。针对水下航行器主动声呐探测性能下降问题,本文提出基于非负矩阵分解的双曲调频信号目标回波增强方法。该方法对目标回波和干扰... 双曲调频信号是主动声呐中常用的多普勒不敏感信号。在实际使用中,由于信道变化和混响影响,目标回波较弱。针对水下航行器主动声呐探测性能下降问题,本文提出基于非负矩阵分解的双曲调频信号目标回波增强方法。该方法对目标回波和干扰信号的基矩阵分别定义,将发射信号的时频图作为目标回波的频率信息矩阵,对目标回波的时间信息矩阵做出约束,迭代处理完成目标回波的增强,获得较高增益的匹配回波检测结果。数值仿真和海上试验结果表明:本文方法与传统匹配滤波方法相比,其峰均比值提高了2 dB以上,提高了回波检测结果。 展开更多
关键词 主动声呐 水下探测 混响 噪声 非负矩阵分解 双曲调频信号 回波增强 目标检测
下载PDF
基于解卷积的高精度水下声信标测向方法
16
作者 查继林 王庆 王方勇 《声学技术》 CSCD 北大核心 2024年第3期412-416,共5页
针对水下声信标搜寻定位声呐对搜寻定位效率的需求,文章引入一种基于空域解卷积的高精度水下声信标测向方法,对常规波束形成结果进行解卷积处理,提高了声信标搜寻定位声呐的处理增益和测向精度,提高了搜寻定位效率,并且使得为搜索发射... 针对水下声信标搜寻定位声呐对搜寻定位效率的需求,文章引入一种基于空域解卷积的高精度水下声信标测向方法,对常规波束形成结果进行解卷积处理,提高了声信标搜寻定位声呐的处理增益和测向精度,提高了搜寻定位效率,并且使得为搜索发射频率为37.5 kHz的声信标设计的声呐,同时也具备了对发射频率为8.8 kHz的声信标的搜寻定位功能。通过仿真和实测数据验证了文中方法的有效性。 展开更多
关键词 水下声信标 测向 声呐信号处理 解卷积
下载PDF
基于目标特征的数据压缩预处理方法
17
作者 王晨 陈晶晶 《声学技术》 CSCD 北大核心 2024年第1期113-118,共6页
随着水下自动监测技术的不断发展,对于数据的实时传输效率和测量精度的要求也越来越高,而高质量无损数据压缩传输技术还存在严重不足。文章利用在广西西江航道上建立的侧扫声呐船舶吃水自动监测系统,提出了一种基于目标特征的数据压缩... 随着水下自动监测技术的不断发展,对于数据的实时传输效率和测量精度的要求也越来越高,而高质量无损数据压缩传输技术还存在严重不足。文章利用在广西西江航道上建立的侧扫声呐船舶吃水自动监测系统,提出了一种基于目标特征的数据压缩预处理方法。该方法根据散货船的船体结构和声图成像特点,在进行数据压缩前分别在时间和空间两个维度上实现对目标信号的识别和提取,完成对无关冗余数据的剔除。该预处理方法不仅可以大幅提高数据压缩的压缩比,提高传输效率,节省存储空间,还可以保证用于测量计算的目标关键特征信息不丢失,为进一步突破无损数据压缩的压缩比限制提供新思路。 展开更多
关键词 目标特征 数据压缩 水下测量 侧扫声呐 船舶监测
下载PDF
用于水下声呐目标检测的弱特征共焦通道调控方法
18
作者 何梦云 何自芬 +2 位作者 张印辉 陈光晨 张枫 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1281-1296,共16页
声呐图像视觉检测是复杂水域资源勘探和水下异物目标探测领域的重要技术之一。针对声呐图像中小目标存在的特征微弱和背景信息干扰问题,本文提出弱特征共焦通道调控水下声呐目标检测算法。为了提高模型对弱小目标的信息捕获和表征能力,... 声呐图像视觉检测是复杂水域资源勘探和水下异物目标探测领域的重要技术之一。针对声呐图像中小目标存在的特征微弱和背景信息干扰问题,本文提出弱特征共焦通道调控水下声呐目标检测算法。为了提高模型对弱小目标的信息捕获和表征能力,设计弱小目标特征激活策略,并引入先验框尺度校准机制匹配底层语义特征检测分支,以提高小目标检测精度。应用全局信息聚合模块深入挖掘弱小目标的全局特征,避免冗余信息覆盖小目标微弱关键特征。为解决传统空间金字塔池化易忽视通道信息的问题,提出共焦通道调控池化模块,保留有效通道域小目标信息并克服复杂背景信息干扰。实验结果表明,本文所提模型在水下声呐数据集的9类弱小目标识别的平均检测精度达83.3%,相较基准提高了5.5%,其中铁桶、人体模型和立方体检测精度得到显著提高,分别提高24%、8.6%和7.3%,有效改善水下复杂环境中弱小目标漏检和误检问题。 展开更多
关键词 弱小目标检测 水下声呐图像 全局信息聚合 共焦通道调控池化
下载PDF
基于语义分割的侧扫声纳管线目标检测方法
19
作者 郑根 徐会希 +1 位作者 赵建虎 杨文林 《海洋测绘》 CSCD 北大核心 2024年第2期9-13,共5页
为提高侧扫声纳图像中管线目标检测的自动化程度及效率,提出了一种基于语义分割的水下管线目标检测方法。首先通过构建高效语义分割网络主干,提高网络计算速度并降低网络对计算机硬件性能的需求;其次给出了一种针对管线目标特点的加权... 为提高侧扫声纳图像中管线目标检测的自动化程度及效率,提出了一种基于语义分割的水下管线目标检测方法。首先通过构建高效语义分割网络主干,提高网络计算速度并降低网络对计算机硬件性能的需求;其次给出了一种针对管线目标特点的加权交叉熵损失函数,解决了因类间数量不均衡导致的网络训练困难问题。以多种复杂条件下侧扫声纳实测数据进行了水下管线检测试验,结果表明,该方法在取得和经典网络相近精度的情况下,速度提升了2.7倍,可达52.6FPS,实现了水下管线的快速、准确检测。 展开更多
关键词 水下目标检测 侧扫声纳图像 深度学习 语义分割 网络优化 类间不平衡
下载PDF
基于随机共振的水下目标微弱回波信号增强检测
20
作者 刘振 孙纯 +2 位作者 周胜增 杜选民 孙德龙 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2014-2024,共11页
针对低信噪比下主动声呐探测水下目标的微弱回波信号检测难题,本文提出了一种基于随机共振的微弱回波信号增强检测方法。该方法通过建立频移变尺度随机共振系统,与输入高频微弱回波信号、随机噪声相匹配,实现微弱回波信号的共振增强;进... 针对低信噪比下主动声呐探测水下目标的微弱回波信号检测难题,本文提出了一种基于随机共振的微弱回波信号增强检测方法。该方法通过建立频移变尺度随机共振系统,与输入高频微弱回波信号、随机噪声相匹配,实现微弱回波信号的共振增强;进而利用乘积谱与谱峭度构建目标回波亮点增强检测指标,有效提升微弱回波亮点的能量集中程度,抑制杂波及虚假成分干扰。仿真结果表明:在低信噪比下,随机共振系统输出信噪比增益可达5 dB以上,微弱目标回波亮点检测结果更加直观便捷,杂波干扰得到大幅抑制。海试数据处理结果进一步验证了所提方法的有效性和可靠性。 展开更多
关键词 主动声呐 微弱信号检测 随机共振 水下目标探测 杂波抑制 非线性双稳态系统 多普勒频移 低信噪比
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部