The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized...The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized phase-integral (WKBZ) normal mo de approach is extended to deal with this kind of problem. Numerical results show that the extended WKBZ approach is effective.展开更多
文摘The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized phase-integral (WKBZ) normal mo de approach is extended to deal with this kind of problem. Numerical results show that the extended WKBZ approach is effective.