For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,an...For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.展开更多
With the continuous development of the economy and society,plastic pollution in rivers,lakes,oceans,and other bodies of water is increasingly severe,posing a serious challenge to underwater ecosystems.Effective cleani...With the continuous development of the economy and society,plastic pollution in rivers,lakes,oceans,and other bodies of water is increasingly severe,posing a serious challenge to underwater ecosystems.Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste.However,it often causes significant challenges such as noise interference,low contrast,and blurred textures in underwater optical images.A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed,which combines weighted logarithmic transformations,adaptive gamma correction,improved multi-scale Retinex(MSR)algorithm,and the contrast limited adaptive histogram equalization(CLAHE)algorithm.The proposed algorithm improves brightness,contrast,and color recovery and enhances detail features resulting in better overall image quality.A network framework is proposed in this article based on the YOLOv5 model.MobileViT is used as the backbone of the network framework,detection layer is added to improve the detection capability for small targets,self-attention and mixed-attention modules are introduced to enhance the recognition capability of important features.The cross stage partial(CSP)structure is employed in the spatial pyramid pooling(SPP)section to enrich feature information,and the complete intersection over union(CIOU)loss is replaced with the focal efficient intersection over union(EIOU)loss to accelerate convergence while improving regression accuracy.Experimental results proved that the target recognition algorithm achieved a recognition accuracy of 0.913 and ensured a recognition speed of 45.56 fps/s.Subsequently,Using red,green,blue and depth(RGB-D)camera to construct a system for identifying and locating underwater plastic waste.Experiments were conducted underwater for recognition,localization,and error analysis.The experimental results demonstrate the effectiveness of the proposed method for identifying and locating underwater plastic waste,and it has good localization accuracy.展开更多
偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同...偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同偏振方向图像之间的联系特征;引入特征增强模块对多层次特征进行进一步增强;采用跨层级特征聚合网络,充分利用不同尺度的特征信息,完成特征的有效聚合,最终联合多通道特征信息输出检测结果。构建包含10类目标的低空伪装目标偏振图像数据集PICO(Polarization Image of Camouflaged Objects)。在PICO数据集上的实验结果表明,新方法可以有效检测伪装目标,mAP_(0.5:0.95)达到52.0%,mAP_(0.5)达到91.5%,检测速率达到55.0帧/s,满足实时性要求。展开更多
针对复杂背景条件下目标难以识别的问题,采用彩色偏振成像技术,提出了一种基于彩色偏振图像的目标增强方法。该方法首先根据分焦平面彩色偏振相机获得的数据得到彩色线偏振度(degree of linear polarization, DoLP)、彩色偏振角(angle o...针对复杂背景条件下目标难以识别的问题,采用彩色偏振成像技术,提出了一种基于彩色偏振图像的目标增强方法。该方法首先根据分焦平面彩色偏振相机获得的数据得到彩色线偏振度(degree of linear polarization, DoLP)、彩色偏振角(angle of polarization, AoP)和彩色强度(S0)图像;然后利用目标和背景的彩色偏振特性差异大的特点提取DoLP、AoP和S0的视觉显著度,使目标得到初步的增强;随后将3种视觉显著度图像转到HSV空间进行融合,最后转到RGB空间显示。使用对比度和矢量角度距离作为客观评价指标开展实验,多个实验场景数据表明,融合图像的对比度和矢量角度距离分别比融合前图像最高提升了3.971倍和1.711倍。展开更多
针对阴影造成的低光照、低对比度和高噪声等问题,为提高阴影下目标的检测、识别精度,借鉴生物偏振视觉机理,在偏振距离理论及算法的基础上,提出一种与“色调-饱和度-强度”颜色空间(HSI color space)融合的偏振距离强度(PDI)模型。该模...针对阴影造成的低光照、低对比度和高噪声等问题,为提高阴影下目标的检测、识别精度,借鉴生物偏振视觉机理,在偏振距离理论及算法的基础上,提出一种与“色调-饱和度-强度”颜色空间(HSI color space)融合的偏振距离强度(PDI)模型。该模型利用偏振角信息作为估算方式设定阈值范围,将偏振距离信息与原始光强信息融合为新的强度通道,并与原始色调及饱和度信息融合,最终获取PDI模型映射结果。搭建实测实验装置,并开展4组对比实验。结果表明,与其他3种现有目标增强算法相比,所提算法在灰度对比度、信杂比和Fish距离指标上均取得显著提升,能够使阴影下目标与背景间的差异得到明显提高。展开更多
基金National Natural Science Foundation of China(Nos.11847069,11847127)Science Foundation of North University of China(No.XJJ20180030)。
文摘For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.
基金supported by the Foundation of Henan Key Laboratory of Underwater Intelligent Equipment under Grant No.KL02C2105Project of SongShan Laboratory under Grant No.YYJC062022012+2 种基金Training Plan for Young Backbone Teachers in Colleges and Universities in Henan Province under Grant No.2021GGJS077Key Scientific Research Projects of Colleges and Universities in Henan Province under Grant No.22A460022North China University of Water Resources and Electric Power Young Backbone Teacher Training Project under Grant No.2021-125-4.
文摘With the continuous development of the economy and society,plastic pollution in rivers,lakes,oceans,and other bodies of water is increasingly severe,posing a serious challenge to underwater ecosystems.Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste.However,it often causes significant challenges such as noise interference,low contrast,and blurred textures in underwater optical images.A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed,which combines weighted logarithmic transformations,adaptive gamma correction,improved multi-scale Retinex(MSR)algorithm,and the contrast limited adaptive histogram equalization(CLAHE)algorithm.The proposed algorithm improves brightness,contrast,and color recovery and enhances detail features resulting in better overall image quality.A network framework is proposed in this article based on the YOLOv5 model.MobileViT is used as the backbone of the network framework,detection layer is added to improve the detection capability for small targets,self-attention and mixed-attention modules are introduced to enhance the recognition capability of important features.The cross stage partial(CSP)structure is employed in the spatial pyramid pooling(SPP)section to enrich feature information,and the complete intersection over union(CIOU)loss is replaced with the focal efficient intersection over union(EIOU)loss to accelerate convergence while improving regression accuracy.Experimental results proved that the target recognition algorithm achieved a recognition accuracy of 0.913 and ensured a recognition speed of 45.56 fps/s.Subsequently,Using red,green,blue and depth(RGB-D)camera to construct a system for identifying and locating underwater plastic waste.Experiments were conducted underwater for recognition,localization,and error analysis.The experimental results demonstrate the effectiveness of the proposed method for identifying and locating underwater plastic waste,and it has good localization accuracy.
文摘偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同偏振方向图像之间的联系特征;引入特征增强模块对多层次特征进行进一步增强;采用跨层级特征聚合网络,充分利用不同尺度的特征信息,完成特征的有效聚合,最终联合多通道特征信息输出检测结果。构建包含10类目标的低空伪装目标偏振图像数据集PICO(Polarization Image of Camouflaged Objects)。在PICO数据集上的实验结果表明,新方法可以有效检测伪装目标,mAP_(0.5:0.95)达到52.0%,mAP_(0.5)达到91.5%,检测速率达到55.0帧/s,满足实时性要求。
文摘针对复杂背景条件下目标难以识别的问题,采用彩色偏振成像技术,提出了一种基于彩色偏振图像的目标增强方法。该方法首先根据分焦平面彩色偏振相机获得的数据得到彩色线偏振度(degree of linear polarization, DoLP)、彩色偏振角(angle of polarization, AoP)和彩色强度(S0)图像;然后利用目标和背景的彩色偏振特性差异大的特点提取DoLP、AoP和S0的视觉显著度,使目标得到初步的增强;随后将3种视觉显著度图像转到HSV空间进行融合,最后转到RGB空间显示。使用对比度和矢量角度距离作为客观评价指标开展实验,多个实验场景数据表明,融合图像的对比度和矢量角度距离分别比融合前图像最高提升了3.971倍和1.711倍。
文摘针对阴影造成的低光照、低对比度和高噪声等问题,为提高阴影下目标的检测、识别精度,借鉴生物偏振视觉机理,在偏振距离理论及算法的基础上,提出一种与“色调-饱和度-强度”颜色空间(HSI color space)融合的偏振距离强度(PDI)模型。该模型利用偏振角信息作为估算方式设定阈值范围,将偏振距离信息与原始光强信息融合为新的强度通道,并与原始色调及饱和度信息融合,最终获取PDI模型映射结果。搭建实测实验装置,并开展4组对比实验。结果表明,与其他3种现有目标增强算法相比,所提算法在灰度对比度、信杂比和Fish距离指标上均取得显著提升,能够使阴影下目标与背景间的差异得到明显提高。