The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion...The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.展开更多
文摘The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.