This Letter proposes a post-equalizer for underwater visible light communication(UVLC) systems that combines channel estimation and joint time-frequency analysis, named channel-estimation-based bandpass variable-order...This Letter proposes a post-equalizer for underwater visible light communication(UVLC) systems that combines channel estimation and joint time-frequency analysis, named channel-estimation-based bandpass variable-order time-frequency network(CBV-TFNet). By utilizing a bandpass variable-order loss function with communication prior knowledge, CBVTFNet enhances communication performance and training stability. It enables lightweight implementation and faster convergence through a channel estimation-based mask. The superior performance of the proposed equalization method over Volterra and deep neural network(DNN)-based methods has been studied experimentally. Using bit-power loading discrete multitone (DMT) modulation, the proposed method achieves a transmission bitrate of 4.956 Gbps through a 1.2 m underwater channel utilizing only 38.15% of real multiplication calculations compared to the DNN equalizer and achieving a bitrate gain of440 Mbps and a significantly larger dynamic range over the LMS-Volterra equalizer. Results highlight CBV-TFNet's potential for future post-equalization in UVLC systems.展开更多
Visible light communication based on light-emitting diodes(LEDs) has become a promising candidate by providing high data rates, low latency, and secure communication for underwater environments. In this paper,a self-d...Visible light communication based on light-emitting diodes(LEDs) has become a promising candidate by providing high data rates, low latency, and secure communication for underwater environments. In this paper,a self-designed common-anode GaN-based five-primary-color LED(RGBYC LED) on a Si substrate is proposed and fabricated. The design of a common anode is used to mitigate the saturation effect for a low-frequency component. Additionally, compared with commercially available LEDs that suffer from nonlinearity distortion,applying the designed LED can provide much better and broader linearity according to the measurement results.Therefore, the modulation depth and system performance can be further improved to implement a high-speed underwater visible light communication(UVLC) system. There is no nonlinearity compensation algorithm applied due to the good linearity of the proposed LED;thus, the offline digital signal processing is simplified. We experimentally demonstrate 14.81 Gbit/s 64 quadrature amplitude modulation(QAM)-discrete multitone(DMT)and 15.17 Gbit/s bit-loading-DMT transmissions through a 1.2-m-long underwater channel based on the proposed RGBYC LED with an intrasymbol frequency-domain averaging channel estimation and zero-forcing equalization.As far as we know, this is the highest data rate for an LED-based UVLC system.展开更多
In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete F...In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete Fourier transform spread orthogonal frequency division multiplexing(DFT-S OFDM) in underwater visible light communication(UVLC) systems. Cascaded post-equalization schemes are suggested to compensate the system impairments. For the first time, a two-level post-equalizer is presented to mitigate the nonlinear effect and improve the system performance of UVLC. The first post-equalization is based on a novel recursive least square Volterra. These modulation formats are all experimentally demonstrated with corresponding digital signal processing(DSP) algorithms. The experimental results show that single carrier modulations including CAP and DFT-S OFDM can outperform OFDM. Our experiment results show that up to 3 Gb/s over a 1.2 m underwater visible light transmission can be achieved by using DFT-S OFDM 64 QAM and CAP-64. The measured bit error rate is well under the hard decision-forward error correction(HD-FEC) threshold of 3.8 × 10^(-3).展开更多
We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level puls...We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).展开更多
For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater survei...For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater surveillance,location tracking system,etc.Most of the IoUT applications rely on acoustic medium.The current IoUT applications face difficulty in delivering a reliable communication system due to the various technical limitations of IoUT environment such as low data rate,attenuation,limited bandwidth,limited battery,limited memory,connectivity problem,etc.One of the significant applications of IoUT include monitoring underwater diver networks.In order to perform a reliable and energy-efficient communication system in the underwater diver networks,a smart underwater hybrid softwaredefined modem(UHSDM)for the mobile ad-hoc network was developed that is used for selecting the best channel/medium among acoustic,visible light communication(VLC),and infrared(IR)based on the criteria established within the system.However,due to the mobility of underwater divers,the developed UHSDMmeets the challenges such as connectivity errors,frequent link failure,transmission delay caused by re-routing,etc.During emergency,the divers are most at the risk of survival.To deal with diver mobility,connectivity,energy efficiency,and reducing the latency in ADN,a handover mechanism based on pre-built UHSDM is proposed in this paper.This paper focuses on(1)design of UHSDM for ADN(2)propose the channel selection mechanism in UHSDM for selecting the best medium for handover and(3)propose handover protocol inADN.The implementation result shows that the proposed mechanism can be used to find the new route for divers in advance and the latency can be reduced significantly.Additionally,this paper shows the real field experiment of air tests and underwater tests with various distances.This research will contribute much to the profit of researchers in underwater diver networks and underwater networks,for improving the quality of services(QoS)of underwater applications.展开更多
With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has...With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.展开更多
基金supported by the National Key Research and Development Program of China (No.2022YFB2802803)the National Natural Science Foundation of China (Nos.61925104,62031011,and 62201157)。
文摘This Letter proposes a post-equalizer for underwater visible light communication(UVLC) systems that combines channel estimation and joint time-frequency analysis, named channel-estimation-based bandpass variable-order time-frequency network(CBV-TFNet). By utilizing a bandpass variable-order loss function with communication prior knowledge, CBVTFNet enhances communication performance and training stability. It enables lightweight implementation and faster convergence through a channel estimation-based mask. The superior performance of the proposed equalization method over Volterra and deep neural network(DNN)-based methods has been studied experimentally. Using bit-power loading discrete multitone (DMT) modulation, the proposed method achieves a transmission bitrate of 4.956 Gbps through a 1.2 m underwater channel utilizing only 38.15% of real multiplication calculations compared to the DNN equalizer and achieving a bitrate gain of440 Mbps and a significantly larger dynamic range over the LMS-Volterra equalizer. Results highlight CBV-TFNet's potential for future post-equalization in UVLC systems.
基金National Natural Science Foundation of China(NSFC)(61571133)National Key Research and Development Program of China(2016YFB0400600)
文摘Visible light communication based on light-emitting diodes(LEDs) has become a promising candidate by providing high data rates, low latency, and secure communication for underwater environments. In this paper,a self-designed common-anode GaN-based five-primary-color LED(RGBYC LED) on a Si substrate is proposed and fabricated. The design of a common anode is used to mitigate the saturation effect for a low-frequency component. Additionally, compared with commercially available LEDs that suffer from nonlinearity distortion,applying the designed LED can provide much better and broader linearity according to the measurement results.Therefore, the modulation depth and system performance can be further improved to implement a high-speed underwater visible light communication(UVLC) system. There is no nonlinearity compensation algorithm applied due to the good linearity of the proposed LED;thus, the offline digital signal processing is simplified. We experimentally demonstrate 14.81 Gbit/s 64 quadrature amplitude modulation(QAM)-discrete multitone(DMT)and 15.17 Gbit/s bit-loading-DMT transmissions through a 1.2-m-long underwater channel based on the proposed RGBYC LED with an intrasymbol frequency-domain averaging channel estimation and zero-forcing equalization.As far as we know, this is the highest data rate for an LED-based UVLC system.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61571133)the National Key Research and Development Program of China(No.2017YFB0403603)
文摘In this paper, we present a detailed comparison of applying three advanced modulation formats including carrierless amplitude and phase modulation(CAP), orthogonal frequency division multiplexing(OFDM), and discrete Fourier transform spread orthogonal frequency division multiplexing(DFT-S OFDM) in underwater visible light communication(UVLC) systems. Cascaded post-equalization schemes are suggested to compensate the system impairments. For the first time, a two-level post-equalizer is presented to mitigate the nonlinear effect and improve the system performance of UVLC. The first post-equalization is based on a novel recursive least square Volterra. These modulation formats are all experimentally demonstrated with corresponding digital signal processing(DSP) algorithms. The experimental results show that single carrier modulations including CAP and DFT-S OFDM can outperform OFDM. Our experiment results show that up to 3 Gb/s over a 1.2 m underwater visible light transmission can be achieved by using DFT-S OFDM 64 QAM and CAP-64. The measured bit error rate is well under the hard decision-forward error correction(HD-FEC) threshold of 3.8 × 10^(-3).
基金supported by the National Key Research and Development Program of China(No.2022YFB2802803)the National Natural Science Foundation of China(Nos.61925104,62031011,and 62201157)the Major Key Project of PCL。
文摘We propose an encryption technique for underwater visible light communication[UVLC]based on chaotic phase scrambling[PS]and conjugate frequency hopping[CFH].The technique is experimentally tested using an 8-level pulse amplitude modulation[PAM-8]and a 1.2 m underwater link.The security key of the phase scrambling code is generated according to a logistic map,and the frequency hopping is achieved by adding the same zero frequency points to the signal spectrum.The maximum transmission rate of 2.1 Gbit/s is measured with bit-error-rate[BER]below 7%the hard-decision forward error correction[HD-FEC]threshold of 3.8×10^(-3).
基金This research was a part of the project titled“Development of the wide-area underwater mobile communication systems”funded by the Ministry of Oceans and Fisheries,Korea.
文摘For the past few decades,the internet of underwater things(IoUT)otained a lot of attention in mobile aquatic applications such as oceanography,diver network monitoring,unmanned underwater exploration,underwater surveillance,location tracking system,etc.Most of the IoUT applications rely on acoustic medium.The current IoUT applications face difficulty in delivering a reliable communication system due to the various technical limitations of IoUT environment such as low data rate,attenuation,limited bandwidth,limited battery,limited memory,connectivity problem,etc.One of the significant applications of IoUT include monitoring underwater diver networks.In order to perform a reliable and energy-efficient communication system in the underwater diver networks,a smart underwater hybrid softwaredefined modem(UHSDM)for the mobile ad-hoc network was developed that is used for selecting the best channel/medium among acoustic,visible light communication(VLC),and infrared(IR)based on the criteria established within the system.However,due to the mobility of underwater divers,the developed UHSDMmeets the challenges such as connectivity errors,frequent link failure,transmission delay caused by re-routing,etc.During emergency,the divers are most at the risk of survival.To deal with diver mobility,connectivity,energy efficiency,and reducing the latency in ADN,a handover mechanism based on pre-built UHSDM is proposed in this paper.This paper focuses on(1)design of UHSDM for ADN(2)propose the channel selection mechanism in UHSDM for selecting the best medium for handover and(3)propose handover protocol inADN.The implementation result shows that the proposed mechanism can be used to find the new route for divers in advance and the latency can be reduced significantly.Additionally,this paper shows the real field experiment of air tests and underwater tests with various distances.This research will contribute much to the profit of researchers in underwater diver networks and underwater networks,for improving the quality of services(QoS)of underwater applications.
文摘With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.