Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking ...Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.展开更多
Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a h...Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.展开更多
Based on hyperbaric gas metal arc welding (GMAW) experiments at ambient pressure of 0. 8 MPa, the process stability of different welding voltages was studied. The experiments were carried out with a high speed camer...Based on hyperbaric gas metal arc welding (GMAW) experiments at ambient pressure of 0. 8 MPa, the process stability of different welding voltages was studied. The experiments were carried out with a high speed camera system including infrared laser backlight and electric signal acquisition system. Keeping wire feed speed at 8 m/min, arc length increases linearly with the increase of welding voltage in O. 8 MPa argon environment. Under this condition, all the metal transfer modes are droplet repelled transfer and the transfer frequency increases with increasing welding voltage. The number of deviating spatter is less with relatively high welding voltage. The results of electric signal waveforms show that the probabilities of short circuit and arc interruption decrease firstly and then increase with increasing welding voltage. When the welding voltage is 37 V, the hyperbaric welding process is the most stable with no probability of short circuit and arc interruption.展开更多
采用高压环境模拟舱对高压干法熔化极气体保护焊(gas metal arc welding,GMAW)进行了试验研究.焊接电源采用数字增量型PID算法,在常压下进行控制器系数整定.通过试验获得了环境压力为0.4,0.8,2 MPa时焊接电弧弧柱区的电场强度,理论推导...采用高压环境模拟舱对高压干法熔化极气体保护焊(gas metal arc welding,GMAW)进行了试验研究.焊接电源采用数字增量型PID算法,在常压下进行控制器系数整定.通过试验获得了环境压力为0.4,0.8,2 MPa时焊接电弧弧柱区的电场强度,理论推导了压力环境电弧特性的改变对焊接电源控制品质的影响规律,并将环境压力作为变量引入到控制器算法中.采用常压下整定的控制器系数,在环境压力为0.8 MPa时,对算法改进前后进行了试验验证.结果表明,改进后的焊接电源控制算法能够有效减少焊接电流的波动,从而提高了焊接过程稳定性,使焊接过程产生的飞溅尺寸和数量有所改善.展开更多
基金supported by National Hi-tech Research and Development Program of China(863 program, Grant No. 2002AA602012)National Natural Science Foundation of China(Grant No. 40776054)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality of China
文摘Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.
基金Supported by National Natural Science Foundation of China(Grant No.51275051)Innovation and Improvement Plan of Beijing Education Commission,China(Grant No.TJSHG201510017023)
文摘Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.
文摘Based on hyperbaric gas metal arc welding (GMAW) experiments at ambient pressure of 0. 8 MPa, the process stability of different welding voltages was studied. The experiments were carried out with a high speed camera system including infrared laser backlight and electric signal acquisition system. Keeping wire feed speed at 8 m/min, arc length increases linearly with the increase of welding voltage in O. 8 MPa argon environment. Under this condition, all the metal transfer modes are droplet repelled transfer and the transfer frequency increases with increasing welding voltage. The number of deviating spatter is less with relatively high welding voltage. The results of electric signal waveforms show that the probabilities of short circuit and arc interruption decrease firstly and then increase with increasing welding voltage. When the welding voltage is 37 V, the hyperbaric welding process is the most stable with no probability of short circuit and arc interruption.