期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stress relaxation of warm frozen soil under drained or undrained conditions
1
作者 SongHe Wang JiLin Qi 《Research in Cold and Arid Regions》 2011年第6期468-472,共5页
To investigate the influence of drainage conditions on stress relaxation characteristics of warm frozen soil, a series of laboratory tests were carried out under drained and undrained conditions. The results indicate ... To investigate the influence of drainage conditions on stress relaxation characteristics of warm frozen soil, a series of laboratory tests were carried out under drained and undrained conditions. The results indicate that confining pressure obviously influences the relaxation process of warm frozen soil. Under undrained condition, with increase in confining pressure, the critical relaxation du- ration tends to grow as well as instantaneous relaxation. But the relaxation rate is sensitive to confining pressure in the initial stage, and with further development, the effect tends to diminish. Under drained condition, the relaxation rate is greater than that under tmdrained condition in the initial stage but with the development of relaxation, the difference decreases. The volumetric defor- mation of warm frozen clay under drained condition is much larger than that under undrained condition. 展开更多
关键词 warm frozen soil stress relaxation confining pressure drained and undrained conditions volumetric change
下载PDF
Describing failure in geomaterials using second-order work approach
2
作者 Franois Nicot Félix Darve 《Water Science and Engineering》 EI CAS CSCD 2015年第2期89-95,共7页
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin... Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory. 展开更多
关键词 Failure in geomaterials Undrained triaxial loading path Second-order work Kinetic energy Plastic limit condition Control parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部