Ethyl acetate (EA) shows low viscosity for its relative permittivity. Monofluorinated organic solvents exert the polar effect on the various properties. We have investigated the effect of position isomerism on the phy...Ethyl acetate (EA) shows low viscosity for its relative permittivity. Monofluorinated organic solvents exert the polar effect on the various properties. We have investigated the effect of position isomerism on the physical and electrochemical properties of two monofluorinated carboxylates: 2-fluoroethyl acetate (2FEA) and ethyl fluoroacetate (EFA). Relative permittivity of 2FEA was lower than that of EFA, whereas viscosity of 2FEA was higher. Electrolytic conductivity of a LiPF6 solution in 2FEA was lower than that in EFA, but higher than that in EA at high temperatures. The use of 2FEA as a co-solvent improved cycling efficiency and suppressed fading of discharge capacity of a Li|LiCoO2 coin cell at high cycle numbers.展开更多
An assessment of the protective capacity of the vadose zone overlyingthe aquifer systems in the Kaltungo area was carried out to determine itsinfluence on groundwater quality. Applying the schlumberger array with amax...An assessment of the protective capacity of the vadose zone overlyingthe aquifer systems in the Kaltungo area was carried out to determine itsinfluence on groundwater quality. Applying the schlumberger array with amaximum electrode spread AB/2 = 100m through VES, thirty water wellpoints were surveyed using Omega terrameter (PIOSO1) resistivity meter.The field data was first subjected to manual interpretation through curvemarching and then digitized modeled curves using computer software. Theinterpreted data revealed that the area is characterized by eleven differentcurve types representing three to five geo electrical layers. In order toassess the protective capacity of the vadoze zone over the aquifer systems,the longitudinal conductance (S) and transverse resistance (T) (secondarygeoelectric parameters) were computed from the primary data using theDar Zarouk formula. The values of S obtained range from 0.0018 to 0.4056ohms with a mean value of 0.0135 ohms while the values of T range from0.55 ohms to 1195.68 ohms with a mean value of 39.84 ohms. The valuesof S and T obtained reveal that 90% of probed points has poor protectivecapacity, 10 % has moderate protective capacity and 83 % has hightransmissivity, 17 % has intermediate transmissivity. The T and S values areskewed towards poorly protective capacity thus making groundwater in thearea highly vulnerable to contamination from the surface. To achieve goodgroundwater quality in the area, proper completion of newly constructedwells should install protective casing through the entire vadose zone.展开更多
The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthes...The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O_2 positive electrode materials was a promising candidate to replace the commereialized LiCoO_2 for lithium secondary batteries.展开更多
To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were cond...To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.展开更多
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f...Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.展开更多
Glycyrrhiza glabra L.is the most widely used herb in the ancient history of Ayurvedic medicine,as a medicinal value as well as an aromatic herb,and it is commonly known as Mulhatti.Mulhatti roots are useful for medica...Glycyrrhiza glabra L.is the most widely used herb in the ancient history of Ayurvedic medicine,as a medicinal value as well as an aromatic herb,and it is commonly known as Mulhatti.Mulhatti roots are useful for medically and are also a good source of phytoproducts and secondary metabolites present in Mulhatti roots are triterpenoid saponin,glycosides,glycyrrhizin,prenylated biaurone,licoaagrone,7-acetoxy-2-methylisoflavone,4-methylcoumarin,liqcoumarin,glycyrrhetinic acid,quercetin,liquiritigenin,isoliquiritigenin,etc.This study was carried out to study the evaluation of phenolic compounds,2,2-diphenyl-1-picrylhydrazyl(DPPH)free radical activity and general antioxidant capacity of water extracts of Mulhatti roots prepared at different pH values,namely 2,4,7 and 9.Data have shown great differences in terms of results.Most of the phenolic compounds are at pH 7(19.25),followed by pH 9(17.25),pH 2(14.62)and pH 4(8.89 mg GAE/g),respectively.Similarly,the flavonoid data also showed variations,the maximum has been present in pH 2(5.39),then pH 7(3.02),pH 9(1.79)and pH 4(1.40 mg CE/g),respectively.The value for DPPH IC50 free radical scavenging activity was the lowest at pH 7(82.22),followed by pH 2(110.40),pH 4(111.99)and pH 9(146.24μg/mL)and IC50 reference standard(ascorbic acid)was 59.52μg/mL in distilled water.The total capacity of the antioxidant was the highest at pH 2(9.93)followed by pH 4(5.54),pH 7(5.34)and pH 9(4.23 mg AAE/g).According to current research,pH 7 is the best for phytochemicals as well as antioxidants that catch harmful radicals.展开更多
文摘Ethyl acetate (EA) shows low viscosity for its relative permittivity. Monofluorinated organic solvents exert the polar effect on the various properties. We have investigated the effect of position isomerism on the physical and electrochemical properties of two monofluorinated carboxylates: 2-fluoroethyl acetate (2FEA) and ethyl fluoroacetate (EFA). Relative permittivity of 2FEA was lower than that of EFA, whereas viscosity of 2FEA was higher. Electrolytic conductivity of a LiPF6 solution in 2FEA was lower than that in EFA, but higher than that in EA at high temperatures. The use of 2FEA as a co-solvent improved cycling efficiency and suppressed fading of discharge capacity of a Li|LiCoO2 coin cell at high cycle numbers.
文摘An assessment of the protective capacity of the vadose zone overlyingthe aquifer systems in the Kaltungo area was carried out to determine itsinfluence on groundwater quality. Applying the schlumberger array with amaximum electrode spread AB/2 = 100m through VES, thirty water wellpoints were surveyed using Omega terrameter (PIOSO1) resistivity meter.The field data was first subjected to manual interpretation through curvemarching and then digitized modeled curves using computer software. Theinterpreted data revealed that the area is characterized by eleven differentcurve types representing three to five geo electrical layers. In order toassess the protective capacity of the vadoze zone over the aquifer systems,the longitudinal conductance (S) and transverse resistance (T) (secondarygeoelectric parameters) were computed from the primary data using theDar Zarouk formula. The values of S obtained range from 0.0018 to 0.4056ohms with a mean value of 0.0135 ohms while the values of T range from0.55 ohms to 1195.68 ohms with a mean value of 39.84 ohms. The valuesof S and T obtained reveal that 90% of probed points has poor protectivecapacity, 10 % has moderate protective capacity and 83 % has hightransmissivity, 17 % has intermediate transmissivity. The T and S values areskewed towards poorly protective capacity thus making groundwater in thearea highly vulnerable to contamination from the surface. To achieve goodgroundwater quality in the area, proper completion of newly constructedwells should install protective casing through the entire vadose zone.
文摘The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O_2 positive electrode materials was a promising candidate to replace the commereialized LiCoO_2 for lithium secondary batteries.
基金supported by the National Natural Science Foundation of China(21407158)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDB05010300,XDB05040100,XDB05010200)
文摘To investigate the sensitivity of secondary aerosol formation and oxidation capacity to NOx in homogeneous and heterogeneous reactions, a series of irradiated toluene/NOx/air and ?-pinene/NOx/air experiments were conducted in smog chambers in the absence or presence of Al2O3 seed particles. Various concentrations of NOx and volatile organic compounds(VOCs) were designed to simulate secondary aerosol formation under different scenarios for NOx. Under "VOC-limited" conditions, the increasing NOx concentration suppressed secondary aerosol formation, while the increasing toluene concentration not only contributed to the increase in secondary aerosol formation, but also led to the elevated oxidation degree for the organic aerosol. Sulfate formation was suppressed with the increasing NOx due to a decreased oxidation capacity of the photooxidation system. Secondary organic aerosol(SOA) formation also decreased with the presence of high concentration of NOx, because organo-peroxy radicals(RO2) react with NOx instead of with peroxy radicals(RO2 or HO2), resulting in the formation of volatile organic products. The increasing concentration of NOx enhanced the formation of sulfate, nitrate and SOA under "NOx-limited" conditions, in which the heterogeneous reactions played an important role. In the presence of Al2O3 seed particles, a synergetic promoting effect of mineral dust and NOx on secondary aerosol formation in heterogeneous reactions was observed in the photooxidation. This synergetic effect strengthened the positive relationship between NOx and secondary aerosol formation under "NOx-limited" conditions but weakened or even overturned the negative relationship between NOx and secondary aerosol formation under "VOC-limited" conditions. Sensitivity of secondary aerosol formation to NOx seemed different in homogeneous and heterogeneous reactions, and should be both taken into account in the sensitivity study. The sensitivity of secondary aerosol formation to NOx was further investigated under "winter-like" and NH3-rich conditions. No obvious difference for the sensitivity of secondary aerosol formation except nitrate to NOx was observed.
基金supported by the MOST of China(No.2010CB631301 and 2012CBA01207)NSFC(No.U1201241,11375020 and 21321001)
文摘Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.
文摘Glycyrrhiza glabra L.is the most widely used herb in the ancient history of Ayurvedic medicine,as a medicinal value as well as an aromatic herb,and it is commonly known as Mulhatti.Mulhatti roots are useful for medically and are also a good source of phytoproducts and secondary metabolites present in Mulhatti roots are triterpenoid saponin,glycosides,glycyrrhizin,prenylated biaurone,licoaagrone,7-acetoxy-2-methylisoflavone,4-methylcoumarin,liqcoumarin,glycyrrhetinic acid,quercetin,liquiritigenin,isoliquiritigenin,etc.This study was carried out to study the evaluation of phenolic compounds,2,2-diphenyl-1-picrylhydrazyl(DPPH)free radical activity and general antioxidant capacity of water extracts of Mulhatti roots prepared at different pH values,namely 2,4,7 and 9.Data have shown great differences in terms of results.Most of the phenolic compounds are at pH 7(19.25),followed by pH 9(17.25),pH 2(14.62)and pH 4(8.89 mg GAE/g),respectively.Similarly,the flavonoid data also showed variations,the maximum has been present in pH 2(5.39),then pH 7(3.02),pH 9(1.79)and pH 4(1.40 mg CE/g),respectively.The value for DPPH IC50 free radical scavenging activity was the lowest at pH 7(82.22),followed by pH 2(110.40),pH 4(111.99)and pH 9(146.24μg/mL)and IC50 reference standard(ascorbic acid)was 59.52μg/mL in distilled water.The total capacity of the antioxidant was the highest at pH 2(9.93)followed by pH 4(5.54),pH 7(5.34)and pH 9(4.23 mg AAE/g).According to current research,pH 7 is the best for phytochemicals as well as antioxidants that catch harmful radicals.