By numerically solving the Sch6dinger equation of a three-nuclear-spin system, the effects of the non-uniform nearest-neighbor (NN) interaction on the fidelity of a quantum controlled-controlled-no (CCN) gate are...By numerically solving the Sch6dinger equation of a three-nuclear-spin system, the effects of the non-uniform nearest-neighbor (NN) interaction on the fidelity of a quantum controlled-controlled-no (CCN) gate are investigated for a digital initial state and a superposition initial state respectively. It is found from our simulation that the ratio of the deviation of the NN coupling δJ to the NN coupling J should be smaller than 0.0005 to ensure a high fidelity of the quantum CCN gate.展开更多
基金Supported by National Science Foundation of China under Grant Nos. 10874021 and 10774107Science Foundation of Education Committee of Jiangsu Province under Grant No. 07KJB140002
文摘By numerically solving the Sch6dinger equation of a three-nuclear-spin system, the effects of the non-uniform nearest-neighbor (NN) interaction on the fidelity of a quantum controlled-controlled-no (CCN) gate are investigated for a digital initial state and a superposition initial state respectively. It is found from our simulation that the ratio of the deviation of the NN coupling δJ to the NN coupling J should be smaller than 0.0005 to ensure a high fidelity of the quantum CCN gate.