We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent...We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi...This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.展开更多
The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the acceler...The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
We propose an optical image watermarking scheme based on orbital angular momentum(OAM)holography.Multiple topological charges(TCs,l)of OAM,as multiple cryptographic sub-keys,are embedded into the host image along with...We propose an optical image watermarking scheme based on orbital angular momentum(OAM)holography.Multiple topological charges(TCs,l)of OAM,as multiple cryptographic sub-keys,are embedded into the host image along with the watermark information.Moreover,the Arnold transformation is employed to further enhance the security and the scrambling time(m)is also served as another cryptographic key.The watermark image is embedded into the host image by using the discrete wavelet transformation(DWT)and singular value decomposition(SVD)methods.Importantly,the interference image is utilized to further enhance security.The imperceptibility of our proposed method is analyzed by using the peak signal-to-noise ratio(PSNR)and the histogram of the watermarked host image.To demonstrate robustness,a series of attack tests,including Gaussian noise,Poisson noise,salt-and-pepper noise,JPEG compression,Gaussian lowpass filtering,cropping,and rotation,are conducted.The experimental results show that our proposed method has advanced security,imperceptibility,and robustness,making it a promising option for optical image watermarking applications.展开更多
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli...The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communicat...The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.展开更多
Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical inform...Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical information processing.Alternatively,a simple uniaxial crystal can be used to simultaneously generate four OAM states of light through the second harmonic generation and cascaded optical spin-orbit interaction(SOI)processes.However,two of the OAM states realized in the crystal are very weak and limit the practical applications.Here,we aim to circumvent this constraint by using the sequential optical SOI processes in two crystals with threefold rotational symmetry.Four angular momentum states of the fundamental waves are prepared after the first crystal and then are utilized to generate the corresponding second harmonic waves(SHWs)with opposite spin and doubled OAM in the second crystal.Further through a sequential SOI process,totally eight angular momentum states of the SHWs with nearly equal energy are experimentally observed.The proposed methodology may find potential applications in optical communications,parallel optical computing,optical manipulation and so on.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and struct...Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and structured optical field engineering.The exploration of MDMUXs employing cascaded resonant couplers has garnered significant attention owing to their scalability,exceptional integration capabilities,and the anticipated low insertion loss.In this work,we present the successful realization of high-quality orbital angular momentum MDMUX corresponding to topological charges 0,±1,and±2,achieved through the utilization of cascaded fused-biconical tapered couplers.Notably,the measured insertion losses at 1550 nm exhibit remarkable minimal values:0.31,0.10,and 0.64 dB,respectively.Furthermore,the 80%efficiency bandwidths exceed 106,174,and 174 nm for these respective modes.The MDMUX is composed of precisionmanufactured high-quality mode selective couplers(MSCs).Utilizing a proposed supermode propagation method based on mode composition analysis,we precisely describe the operational characteristics of MSCs.Building upon this comprehensive understanding,we embark on a pioneering analysis elucidating the influence of MSC cascading order on the performance of MDMUXs.Our theoretical investigation substantiates that when constructing MDMUXs,MSCs should adhere to a specific cascading sequence.展开更多
Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,...Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,or a 4f system with a phase mask or an iris in between.Orbital angular momentum(OAM)modes spectrum,the Fourier transform of the light field in azimuth,provides a perspective for shaping the light.Here,we propose and experimentally demonstrate a shaping strategy for the azimuthal field by modulating the complex amplitude of the OAM mode spectrum.The scheme utilizes multi-plane light conversion technology and consists only of a spatial light modulator and a mirror.Multiple functions,including beam rotating,beam splitting/combining in azimuth,and OAM mode filtering,are demonstrated.Our work provides a compact and programmable solution for modulating the OAM mode spectrum and shaping beams in azimuth.展开更多
Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM m...Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.展开更多
The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional...The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.展开更多
文摘We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312,61922037,61873115,and 61803348in part by the National Major Scientific Instruments Development Project under Grant 61927807+6 种基金in part by the State Key Laboratory of Deep Buried Target Damage under Grant No.DXMBJJ2019-02in part by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant 2020L0266in part by the Shanxi Province Science Foundation for Youths under Grant No.201701D221123in part by the Youth Academic North University of China under Grant No.QX201803in part by the Program for the Innovative Talents of Higher Education Institutions of Shanxiin part by the Shanxi“1331Project”Key Subjects Construction under Grant 1331KSCin part by the Supported by Shanxi Province Science Foundation for Excellent Youths。
文摘This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.
文摘The loss of Baryonic Matter through Black Holes from our spatial 3-D Universe into its 4th dimension as Dark Matter, is used along with the Conservation of Angular Momentum Principle to prove theoretically the accelerated expansion of the 3-D Universe, as has already been confirmed experimentally being awarded the 2011 Nobel Prize in Physics. Theoretical calculations can estimate further to indicate the true nature of the acceleration;that the outward acceleration is due to the rotation of the Universe caused by Dark Energy from the Void, that the acceleration is non-linear, initially increasing from zero for the short period of about a Million years at a constant rate, and then leveling off non-linearly over extended time before the outward acceleration begins to decrease in a non-linear fashion until it is matched by the gravitational attraction of the matter content of 4D Space and the virtual matter in 3-D Vacuum Space. m = m(4D) + m(Virtual). The rotation of our 3D Universe will become constant once all 3D matter has entered 4D space. As the 3-D Universe tries to expand further it will be pulled inward by its gravitational attraction and will then keep on oscillating about a final radius r<sub>f</sub> while it also keeps on oscillating at right angles to the radius r<sub>f</sub> around final angular velocity ω<sub>f</sub>, until it becomes part of the 4-D Universe. The constant value of the Angular Momentum of our Universe is L = .
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)the Natural Science Foundation of Suqian,Jiangsu Province,China(Grant No.S202108)+1 种基金the Open Research Fund of the National Laboratory of Solid State Microstructures(Grant No.M36055)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX21-0745)。
文摘We propose an optical image watermarking scheme based on orbital angular momentum(OAM)holography.Multiple topological charges(TCs,l)of OAM,as multiple cryptographic sub-keys,are embedded into the host image along with the watermark information.Moreover,the Arnold transformation is employed to further enhance the security and the scrambling time(m)is also served as another cryptographic key.The watermark image is embedded into the host image by using the discrete wavelet transformation(DWT)and singular value decomposition(SVD)methods.Importantly,the interference image is utilized to further enhance security.The imperceptibility of our proposed method is analyzed by using the peak signal-to-noise ratio(PSNR)and the histogram of the watermarked host image.To demonstrate robustness,a series of attack tests,including Gaussian noise,Poisson noise,salt-and-pepper noise,JPEG compression,Gaussian lowpass filtering,cropping,and rotation,are conducted.The experimental results show that our proposed method has advanced security,imperceptibility,and robustness,making it a promising option for optical image watermarking applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
基金supported by the fund of the National Natural Science Foundation of China(51875127,52275322).
文摘The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金National Key Research and Development Program of China (2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China (12104264,12192254,92250304,and 12374311)+2 种基金China Postdoctoral Science Foundation (2022T150392)Natural Science Foundation of Shandong Province (ZR2021QA014 and ZR2023YQ006)Qingchuang Science and Technology Plan of Shandong Province (2022KJ246).
文摘The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.
基金supported by National Natural Science Foundation of China Grants(91950114&12161141010)National Key Technologies R&D Program of China(2022YFA1404301)+1 种基金Guangdong Provincial Innovation and Entrepreneurship Project Grant(2017ZT07C071)Natural Science Foundation of Shenzhen Innovation Commission Grant(JCYJ20200109140808088).
文摘Light beams carrying multiple orbital angular momentum(OAM)states,which can be realized by the structured media with phase singularities,have attracted great attentions in the fields of high dimensional optical information processing.Alternatively,a simple uniaxial crystal can be used to simultaneously generate four OAM states of light through the second harmonic generation and cascaded optical spin-orbit interaction(SOI)processes.However,two of the OAM states realized in the crystal are very weak and limit the practical applications.Here,we aim to circumvent this constraint by using the sequential optical SOI processes in two crystals with threefold rotational symmetry.Four angular momentum states of the fundamental waves are prepared after the first crystal and then are utilized to generate the corresponding second harmonic waves(SHWs)with opposite spin and doubled OAM in the second crystal.Further through a sequential SOI process,totally eight angular momentum states of the SHWs with nearly equal energy are experimentally observed.The proposed methodology may find potential applications in optical communications,parallel optical computing,optical manipulation and so on.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFB1801802)the National Natural Science Foundation of China (Grant Nos.62375143 and 61835006).
文摘Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and structured optical field engineering.The exploration of MDMUXs employing cascaded resonant couplers has garnered significant attention owing to their scalability,exceptional integration capabilities,and the anticipated low insertion loss.In this work,we present the successful realization of high-quality orbital angular momentum MDMUX corresponding to topological charges 0,±1,and±2,achieved through the utilization of cascaded fused-biconical tapered couplers.Notably,the measured insertion losses at 1550 nm exhibit remarkable minimal values:0.31,0.10,and 0.64 dB,respectively.Furthermore,the 80%efficiency bandwidths exceed 106,174,and 174 nm for these respective modes.The MDMUX is composed of precisionmanufactured high-quality mode selective couplers(MSCs).Utilizing a proposed supermode propagation method based on mode composition analysis,we precisely describe the operational characteristics of MSCs.Building upon this comprehensive understanding,we embark on a pioneering analysis elucidating the influence of MSC cascading order on the performance of MDMUXs.Our theoretical investigation substantiates that when constructing MDMUXs,MSCs should adhere to a specific cascading sequence.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFA0706302)the National Natural Science Foundation of China (Grant No.62335019)+2 种基金the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos.2021B1515020093 and 2021B1515120057)the Science and Technology Program of Guangzhou (Grant No.202103030001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Grant No.2017BT01X121).
文摘Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,or a 4f system with a phase mask or an iris in between.Orbital angular momentum(OAM)modes spectrum,the Fourier transform of the light field in azimuth,provides a perspective for shaping the light.Here,we propose and experimentally demonstrate a shaping strategy for the azimuthal field by modulating the complex amplitude of the OAM mode spectrum.The scheme utilizes multi-plane light conversion technology and consists only of a spatial light modulator and a mirror.Multiple functions,including beam rotating,beam splitting/combining in azimuth,and OAM mode filtering,are demonstrated.Our work provides a compact and programmable solution for modulating the OAM mode spectrum and shaping beams in azimuth.
基金supported by the National Natural Science Foundation of China(Grant No.62305388)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230007).
文摘Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030009)the National Natural Science Foundation of China (Grant Nos.61935013,62375181,and 61975133)+1 种基金the Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Shenzhen Peacock Plan (Grant No.KQTD20170330110444030).
文摘The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.