期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tectonic evolution and the analysis of unfavorable geology in a tunnel
1
作者 WANG Jin-shan WANG Li +3 位作者 LI Yong ZHANG Yan-xin CAO Zhi-gang LI Chun-liu 《Journal of Coal Science & Engineering(China)》 2009年第4期374-381,共8页
Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tect... Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tectonic activity, and tectonic evolution ofthe area of the Xiamen submarine tunnel, the strike NWW 295^(。), which is the main unfavorable geological structure that affects the safety of the tunnel construction; the macrogeological prediction concludes that weathered troughs and groundwater-rich zonesformed by its larger-scale fault fracture zones are the main unfavorable geological bodiesprovides a basis for preventing the geo-logical hazards in the tunnel construction. 展开更多
关键词 TUNNEL tectonic evolution unfavorable geological body macro geological prediction geological analytical method
下载PDF
Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China 被引量:19
2
作者 Yong Zhao Pengfei Li Siming Tian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第6期468-477,共10页
Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in ex... Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing. 展开更多
关键词 Tunnel engineering unfavorable geological regions Water inrush and mud gushing Pressure relief technology Advance grouting technology Advance jet grouting
下载PDF
From the new Austrian tunneling method to the geoengineering condition evaluation and dynamic controlling method 被引量:1
3
作者 Yanjun Shang Kun Li +1 位作者 Wantong He Chunbo Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期366-372,共7页
The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the... The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained. 展开更多
关键词 unfavorable geological body (UGB)Multi-factor interaction matrix Discontinuity dynamic controlling (DDC)Cut slope Geoengineering condition evaluation and dynamic controlling (GEDC) method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部