An imidazole modified mesoporous material has been prepared through a co-condensation procedure and adopted to covalently anchor chiral Mn(Ⅲ) salen complex. The active centers in the as-synthesized catalyst were pres...An imidazole modified mesoporous material has been prepared through a co-condensation procedure and adopted to covalently anchor chiral Mn(Ⅲ) salen complex. The active centers in the as-synthesized catalyst were presented in the form of ionic species. The results of XRD, FTIR, DRUV-Vis, and N2 sorp-tion confirmed the successful immobilization of chiral Mn(Ⅲ) salen complex inside the channels of the modified support and the maintenance of the mesoporous structure of parent support in the immobi-lized catalyst. This heterogeneous catalyst exhibited comparable catalytic activity and enantioselectiv-ity to those of the homogeneous counterpart in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, notably high turnover frequencies have been obtained over this heterogeneous catalyst for the relatively short reaction time and low catalyst amount, due in part to the ionic property as well as the uniform distribution of the active centers.展开更多
A series of chiral salen-Mn(Ⅲ) complexes featuring two tertiary amine units were synthesized and employed in the enantioselective epoxidation of unfunctionalized alkenes in the presence of pyridine N-oxide and 2,6-...A series of chiral salen-Mn(Ⅲ) complexes featuring two tertiary amine units were synthesized and employed in the enantioselective epoxidation of unfunctionalized alkenes in the presence of pyridine N-oxide and 2,6-dimethylpyridine N-oxide as proximal ligands, respectively. Moderate to high enantioselectivity and acceptable yields were achieved when NaClO was used as terminal oxidant under CH2Cl2/H2O biphasic media. Methyl iodide was found to be an effective additive to accelerate the epoxidation, possibly owing to the formation of quaternary ammonium units on catalysts, which may facilitate the reaction in an oil/water biphasic medium. The subsequent stimulation experiment was carried out, and the resulting ESI-HRMS analysis revealed the formation of a novel (salen)manganese(m) intermediate featuring two quaternary ammonium units, and bearing a pyridine N-oxide and a molecule of water simultaneously axially-coordinated backbone.展开更多
Three new homochiral bis-diamine-bridged bi-Mn(salen) complexes were synthesized. Their catalysis on asymmetric epoxidation of a-methylstyrene, styrene and indene was studied with NaC10 and m-CPBA as oxidants respec...Three new homochiral bis-diamine-bridged bi-Mn(salen) complexes were synthesized. Their catalysis on asymmetric epoxidation of a-methylstyrene, styrene and indene was studied with NaC10 and m-CPBA as oxidants respectively. This homogeneous catalyst exhibited comparable catalytic activity and enantioselectivity to the Jacobsen's catalyst in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, the catalyst could be conveniently recovered and reused at least five times without significant losses of both activity and enantioselectivity. Specially, it also could be efficiently used in large-scale reactions with superior catalytic disposition being maintained at the same level, which provided the potential for the applications in industry. The effect of axial bases, temperature and solvent on activity and enantioselectivity of the catalytic system were also studied.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 20773069)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800551017)
文摘An imidazole modified mesoporous material has been prepared through a co-condensation procedure and adopted to covalently anchor chiral Mn(Ⅲ) salen complex. The active centers in the as-synthesized catalyst were presented in the form of ionic species. The results of XRD, FTIR, DRUV-Vis, and N2 sorp-tion confirmed the successful immobilization of chiral Mn(Ⅲ) salen complex inside the channels of the modified support and the maintenance of the mesoporous structure of parent support in the immobi-lized catalyst. This heterogeneous catalyst exhibited comparable catalytic activity and enantioselectiv-ity to those of the homogeneous counterpart in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, notably high turnover frequencies have been obtained over this heterogeneous catalyst for the relatively short reaction time and low catalyst amount, due in part to the ionic property as well as the uniform distribution of the active centers.
基金Project supported by the National Natural Science Founclation of China (No. 20571035), the Gansu Natural Science Foundation of China (No. 3ZS051-A25-003).Acknowledgement The authors are grateful to the Instrumental Analysis and Research Center of Lanzhou University and State Key Laboratory of Applied 0rganic Chemistry for providing instrumentation facilities.
文摘A series of chiral salen-Mn(Ⅲ) complexes featuring two tertiary amine units were synthesized and employed in the enantioselective epoxidation of unfunctionalized alkenes in the presence of pyridine N-oxide and 2,6-dimethylpyridine N-oxide as proximal ligands, respectively. Moderate to high enantioselectivity and acceptable yields were achieved when NaClO was used as terminal oxidant under CH2Cl2/H2O biphasic media. Methyl iodide was found to be an effective additive to accelerate the epoxidation, possibly owing to the formation of quaternary ammonium units on catalysts, which may facilitate the reaction in an oil/water biphasic medium. The subsequent stimulation experiment was carried out, and the resulting ESI-HRMS analysis revealed the formation of a novel (salen)manganese(m) intermediate featuring two quaternary ammonium units, and bearing a pyridine N-oxide and a molecule of water simultaneously axially-coordinated backbone.
基金financially supported by National Ministry of Science and Technology Innovation Fund for High-tech Small and Medium Enterprise Technology (09C26215112399)National Ministry of Human Resources and Social Security Start-up Support Projects for Students Returned to Business, Office of Human Resources and Social Security Issued 2009 (143)
文摘Three new homochiral bis-diamine-bridged bi-Mn(salen) complexes were synthesized. Their catalysis on asymmetric epoxidation of a-methylstyrene, styrene and indene was studied with NaC10 and m-CPBA as oxidants respectively. This homogeneous catalyst exhibited comparable catalytic activity and enantioselectivity to the Jacobsen's catalyst in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, the catalyst could be conveniently recovered and reused at least five times without significant losses of both activity and enantioselectivity. Specially, it also could be efficiently used in large-scale reactions with superior catalytic disposition being maintained at the same level, which provided the potential for the applications in industry. The effect of axial bases, temperature and solvent on activity and enantioselectivity of the catalytic system were also studied.