期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Impact of [110]/(001) uniaxial stress on valence band structure and hole effective mass of silicon
1
作者 马建立 张鹤鸣 +3 位作者 宋建军 王冠宇 王晓艳 徐小波 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第2期6-10,共5页
The valence band structure and hole effective mass of silicon under a uniaxial stress in (001) surface along the [110] direction were detailedly investigated in the framework of the k. p theory. The results demonstr... The valence band structure and hole effective mass of silicon under a uniaxial stress in (001) surface along the [110] direction were detailedly investigated in the framework of the k. p theory. The results demonstrated that the splitting energy between the top band and the second band for tmiaxial compressive stress is bigger than that of the tensile one at the same stress magnitude, and of all common used crystallographic direction, such as [110], [001], [110] and [100], the effective mass for the top band along [110] crystallographic direction is lower under uniaxial compressive stress compared with other stresses and crystallographic directions configurations. In view of suppressing the scattering and reducing the effective mass, the [110] crystallographic direction is most favorable to be used as transport direction of the charge carrier to enhancement mobility when a uniaxial compressive stress along [110] direction is applied. The obtained results can provide a theory reference for the design and the selective of optimum stress and crystallorgraphic direction configuration ofuniaxial strained silicon devices. 展开更多
关键词 valence band structure uniaxial strained silicon k .p method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部