期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ANALYSIS OF THE LOCALIZATION OF DAMAGE AND THE COMPLETE (STRESS-STRAIN) RELATION FOR MESOSCOPIC HETEROGENEOUS ROCK UNDER UNIAXIAL TENSILE LOADING
1
作者 周小平 王建华 +1 位作者 张永兴 哈秋聆 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1031-1038,共8页
The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irr... The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results. 展开更多
关键词 uniaxial tensile loading mesoscopic heterogeneous rock localization of damage and deformation complete stress-strain relation
下载PDF
Residual Tensile Strength of Plain Concrete Under Tensile Fatigue Loading 被引量:2
2
作者 孟宪宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期564-568,共5页
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba... The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established. 展开更多
关键词 CONCRETE FATIGUE uniaxial tensile fatigue loading residual tensile strength residual secant elastic modulus
下载PDF
Study on Fluid Shear Flow on Osteoblast-like Cells in Their Tensile Loading Experiments
3
作者 TENG Wei-zhong WU Wenzhou CHEN Wei-wi 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期36-46,共11页
In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not d... In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial flat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan’s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively. 展开更多
关键词 uniaxial/equi-biaxial flat tensile loading system Four-point bending system Velocity field Shear flow
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部