Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast rou...Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast routing. The algorithm is used for solving the routing problem with delay, delay jitter, bandwidth, and packet loss\|constrained. In the simulation, about 52.33% ants find the successful QoS routing , and converge to the best. It is proved that the algorithm is efficient and effective.展开更多
A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session proces...A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.展开更多
文摘Based on the state transition rule, the local updating rule and the global updating rule of ant colony algorithm, we propose an improved ant colony algorithm of the least\|cost quality of service (QoS) unicast routing. The algorithm is used for solving the routing problem with delay, delay jitter, bandwidth, and packet loss\|constrained. In the simulation, about 52.33% ants find the successful QoS routing , and converge to the best. It is proved that the algorithm is efficient and effective.
文摘A Minimizing Intermediate Multicast Routing protocol (MIMR) is proposed for dynamic multi-hop ad hoc networks. In MIMR,multicast sessions are created and released only by source nodes. In each multicast session process,the source node keeps a list of intermediate nodes and destinations,which is encapsulated into the packet header when the source node sends a multicast packet. Nodes receiving multicast packets decide to accept or forward the packet according to the list. Depending on topology matrix maintained by unicast routing,the shortest virtual hierarchy routing tree is con-structed by improved Dijkstra algorithm. MIMR can achieve the minimum number of intermediate nodes,which are computed through the tree. No control packet is transmitted in the process of mul-ticast session. Load of the network is largely decreased. Experimental result shows that MIMR is flexible and robust for dynamic ad hoc networks.