期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimisation-based Verification Process of Obstacle Avoidance Systems for Unicycle-like Mobile Robots 被引量:2
1
作者 Sivaranjini Srikanthakumar 《International Journal of Automation and computing》 EI 2011年第3期340-347,共8页
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o... This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations. 展开更多
关键词 Verification process obstacle avoidance unicycle mobile robot potential field method optimisation.
下载PDF
Robotic Unicycle Intelligent Robust Control Pt I: Soft Computational Intelligence Toolkit
2
作者 Ulyanov Sergey Ulyanov Viktor Yamafuji Kazuo 《Artificial Intelligence Advances》 2020年第1期71-92,共22页
The concept of an intelligent control system for a complex nonlinear biomechanical system of an extension cableless robotic unicycle discussed.A thermodynamic approach to study optimal control processes in complex non... The concept of an intelligent control system for a complex nonlinear biomechanical system of an extension cableless robotic unicycle discussed.A thermodynamic approach to study optimal control processes in complex nonlinear dynamic systems applied.The results of stochastic simulation of a fuzzy intelligent control system for various types of external/internal excitations for a dynamic,globally unstable control object-extension cableless robotic unicycle based on Soft Computing(Computational Intelligence Toolkit-SCOptKBTM)technology presented.A new approach to design an intelligent control system based on the principle of the minimum entropy production(minimum of useful resource losses)determination in the movement of the control object and the control system is developed.This determination as a fitness function in the genetic algorithm is used to achieve robust control of a robotic unicycle.An algorithm for entropy production computing and representation of their relationship with the Lyapunov function(a measure of stochastic robust stability)described. 展开更多
关键词 robotics unicycle Intelligent control systems Essentially nonlinear model Globally unstable model Stochastic simulation Soft computing
下载PDF
Review and Simulation of a Novel Formation Building Algorithm While Enabling Obstacle Avoidance
3
作者 Michael Levkovsky 《World Journal of Engineering and Technology》 2021年第1期155-172,共18页
Technically, a group of more than two wheeled mobile robots working collectively towards a common goal are known as a multi-robot system. An increasing number of industries have implemented multi-robot systems to elim... Technically, a group of more than two wheeled mobile robots working collectively towards a common goal are known as a multi-robot system. An increasing number of industries have implemented multi-robot systems to eliminate the risk of human injuries while working on hazardous tasks, and to improve productivity. Globally, engineers are continuously researching better, simple, and faster cooperative Control algorithms to provide a Control strategy where each agent in the robot formation can communicate effectively and achieve a consensus in their position, orientation and speed.<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">This paper explores a novel Formation Building Algorithm and its global stability around a configuration vector. A simulation in MATLAB</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">?</span></span></sup><span style="font-family:Verdana;"> was carried out to examine the performance of the Algorithm for two geometric formations and a fixed number of robots. In addition, an obstacle avoidance technique was presented assuming that all robots are equipped with range sensors. In particular, a uniform rounded obstacle is used to analyze</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">the performance of the technique with the use of detailed geometric calculations.</span> 展开更多
关键词 Consensus Variables Adjacency Matrix Decentralized Control Formation Building Algorithm unicycle robot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部