Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of tryi...Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas...While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the exi...Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.展开更多
An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduc...An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduce energy wastage and increase energy utilization, it is necessary to perform efficiency analyses and diagnoses on integrated energy systems(IESs). However, the integrated energy data necessary for energy efficiency analyses and diagnoses come from a wide variety of instruments, each of which uses different transmission protocols and data formats. This makes it challenging to handle energy-flow data in a unified manner. Thus, we have constructed a unified model for diagnosing energy usage abnormalities in IESs. Using this model, the data are divided into working days and non-working days, and benchmark values are calculated after the data have been weighted to enable unified analysis of several types of energy data. The energy-flow data may then be observed, managed, and compared in all aspects to monitor sudden changes in energy usage and energy wastage. The abnormal data identified and selected by the unified model are then subjected to big-data analysis using technical management tools, enabling the detection of user problems such as abnormalities pertaining to acquisition device, metering, and energy usage. This model facilitates accurate metering of energy data and improves energy efficiency. The study has significant implications in terms of fulfilling the energy saving.展开更多
The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large...The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.展开更多
This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticid...This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.展开更多
First, we develop a unitary process that can explain all four physical activations: electromagnetic wave, electromagnetic force, repulsion, and attraction. Second, it is clarified that cosmological and physical entiti...First, we develop a unitary process that can explain all four physical activations: electromagnetic wave, electromagnetic force, repulsion, and attraction. Second, it is clarified that cosmological and physical entities relate to different levels of existence in the universe and, hence, cannot be considered under the same paradigm. We know that biological entities use physical substances as executants;analogously, physical entities use cosmological substances as executants. Therefore, we have introduced new terms for the cosmological substances used as executants in physical activities. Third, this study introduces the primary elements of the cosmological world, such as visibility, forcibility, fullness, and hollowness, and defines them according to their attributes. This study explains how different combinations and placements of primary elements create different cosmological fields. These fields are used in all physical activations. Finally, we explain the entity model and how all physical activations occur. This study concludes that all physical activations use primary elements and follow the same universal law. Therefore, this study addresses the untouched subject of the creation of repulsion and attraction (gravitation). Furthermore, it addresses several cosmic mysteries that are yet to be resolved.展开更多
Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consistin...Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consisting of a complete range of multiple,ternary or binary components and each kind of LC except size exclusion chromatography.In addition,so long as making some assumptions and mathematical conversions,the expressions of various popular models in LC can be derived by using the unified model.展开更多
For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution...Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.展开更多
The molecular interaction volume model (MIVM) for a general ternary system was deduced in detail for further clarifying and understanding its general multicomponent expression. Both MIVM and the unified interaction ...The molecular interaction volume model (MIVM) for a general ternary system was deduced in detail for further clarifying and understanding its general multicomponent expression. Both MIVM and the unified interaction parameter formalism (UIPF) can be used to predict the activities of solutes and solvents in the Fe-Cr-Ni liquid alloys. But the former employs only the infinite dilute activity coefficients, and the later is not applicable without the dilute binary and ternary interaction parameters. MIVM has a certain physical meaning from the viewpoint of statistical thermodynamics, so it is an alternative for the estimation of activity coefficients of the solutes and solvents in a dilute or finite concentration metal solution where the interaction parameters are absent or their accuracies are questionable.展开更多
Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bear...Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.展开更多
A new unified computational method is proposed for modeling the relationship between the parameters of the high-speed particle-impact texturing process and the final surface morphology of the casting roller. The whole...A new unified computational method is proposed for modeling the relationship between the parameters of the high-speed particle-impact texturing process and the final surface morphology of the casting roller. The whole surface-texturing process is divided into three parts. The first part is the acceleration process of particles inside and outside the nozzle,which can be analyzed using the computational fluid dynamics method to obtain the particle impact velocities. The second part is a simulation of the bombardment process of particles onto the roller surface using the LS-DYNA software as the analysis tool and the results obtained in the first part as input parameters. The last part is the continuously random impact process of particles on the casting roller surface to form a functional surface,which is characterized by a simplified roughness model. Finally,the above three parts are combined to establish a unified computational model,the performance of which is successfully verified in a series of experiments.展开更多
We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions contai...We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions containing gravity has been established, and its results are consistent with experiments.展开更多
Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electrom...Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electromagnetic relay. The typical polarized magnetic system has mainly four structures and its simplified equivalent magnetic circuits model is the base of the design of the electromagnetic relay with permanent magnet. In the past, the analysis method that people used was difficult to build the unified mathematical models, which divided the work gap magnetic flux into "permanent magnet flux" and "electromagnetic flux". Based on the analysis method of the work gap magnetic voltage, this paper founds the unified mathematical model of the polarized magnetic system and divides the attractive torque into permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula. It analyses the influence of permanent magnet sizes on permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula and the conclusions can direct the design of aerospace electromagnetic relay with permanent magnet.展开更多
In the unified subquark model of all fundamental particles and forces, the mass of the Higgs boson in the standard model of electroweak interactions (mH) is predicted to be about (where mw is the mass of the charged w...In the unified subquark model of all fundamental particles and forces, the mass of the Higgs boson in the standard model of electroweak interactions (mH) is predicted to be about (where mw is the mass of the charged weak boson), which agrees well with the experimental values of 125 - 126 GeV recently found by the ATLAS and CMS Collaborations at the LHC. It seems to indicate that the Higgs boson is a composite of the iso-doublet subquark-antisubquark pairs well described by the unified subquark model with either one of subquark masses vanishing or being very small compared to the other.展开更多
We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux...We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.展开更多
基金The National Key R&D Program of China(2018YFA0703800)。
文摘Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1。
文摘While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.
基金Project(2017M622540)supported by the China Postdoctoral Science FoundationProject(51808419)supported by the National Natural Science Foundation of China+1 种基金Project(2019CFB217)supported by the National Natural Science Foundation of Hubei Province,ChinaProject(201623)supported by the Science and Technology Project of Wuhan Urban and Rural Construction Committee,China。
文摘Fibre-reinforced polymer(FRP)has the advantages of high strength,light weight,corrosion resistance and convenient construction and is widely used in repairing and strengthening damaged concrete columns.Most of the existing strength models were built by regression analysis of experimental data;however,in this article,a new unified strength model is proposed using the Hoek-Brown failure criterion.To study the strength of FRP-confined damaged and undamaged concrete columns,900 test data were collected from the published literature and a large database that contains the cross-sectional shape of each specimen,the damage type,the damage level and the FRP-confined stiffness was established.A new strength model using the Hoek-Brown failure criterion was established and is suitable for both circular and square columns that are undamaged,load-damaged and fire-damaged.Based on the database,most of the existing strength models from the published literature and the model proposed in this paper were evaluated.The evaluation shows that the proposed model can predict the compressive strength for FRP-confined pre-damaged and undamaged concrete columns with good accuracy.
基金supported by National Key Research and Development Program of China (No.2017YFB903304)the State Grid Science and Technology Program (Hybrid Simnlation Key Technology for Integrated Energy System and Platform Construction)
文摘An integrated energy service company in an industrial park or commercial building is responsible for managing all energy sources in their local region, including electricity, water, gas, heating, and cooling. To reduce energy wastage and increase energy utilization, it is necessary to perform efficiency analyses and diagnoses on integrated energy systems(IESs). However, the integrated energy data necessary for energy efficiency analyses and diagnoses come from a wide variety of instruments, each of which uses different transmission protocols and data formats. This makes it challenging to handle energy-flow data in a unified manner. Thus, we have constructed a unified model for diagnosing energy usage abnormalities in IESs. Using this model, the data are divided into working days and non-working days, and benchmark values are calculated after the data have been weighted to enable unified analysis of several types of energy data. The energy-flow data may then be observed, managed, and compared in all aspects to monitor sudden changes in energy usage and energy wastage. The abnormal data identified and selected by the unified model are then subjected to big-data analysis using technical management tools, enabling the detection of user problems such as abnormalities pertaining to acquisition device, metering, and energy usage. This model facilitates accurate metering of energy data and improves energy efficiency. The study has significant implications in terms of fulfilling the energy saving.
基金supported by a research grant of “Development of a Polarimetric Radar Data Simulator for Local Forecasting Model (Ⅱ)” by the KMAsupport was provided by a NOAA Warn-on-Forecast grant (Grant No. NA16OAR4320115)a National Science Foundation grant (Grant No. AGS-1261776)
文摘The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.
文摘This paper deduces a kinetic model for microbial degradation of pesticides in soils:where x is the concentration of pesticide at time t, so the initial concentration of the pesticide, me the initial number of pesticide-degrading microorganisms, M the carrying capacity for the microorganisms, μ the specific growth rate of the microorganisms, and k the rate constant for the pesticide degradation.In periodic applications of pesticides, this model can be used to continuously describe every degradation curve. Whether a lag phase occurs or not, we can obtain the minimum residue of the pesticide (xe):xe=xdexp(-kMr)/[1-exp(-ker) ]where r is the regular time internals between applications, and xd the dosage of the pesticide.
文摘First, we develop a unitary process that can explain all four physical activations: electromagnetic wave, electromagnetic force, repulsion, and attraction. Second, it is clarified that cosmological and physical entities relate to different levels of existence in the universe and, hence, cannot be considered under the same paradigm. We know that biological entities use physical substances as executants;analogously, physical entities use cosmological substances as executants. Therefore, we have introduced new terms for the cosmological substances used as executants in physical activities. Third, this study introduces the primary elements of the cosmological world, such as visibility, forcibility, fullness, and hollowness, and defines them according to their attributes. This study explains how different combinations and placements of primary elements create different cosmological fields. These fields are used in all physical activations. Finally, we explain the entity model and how all physical activations occur. This study concludes that all physical activations use primary elements and follow the same universal law. Therefore, this study addresses the untouched subject of the creation of repulsion and attraction (gravitation). Furthermore, it addresses several cosmic mysteries that are yet to be resolved.
基金This work was supported by the Excellent Young Faculty Foundation of the State Education Committee of China
文摘Based on six thermodynamic equilibria,a unified retention model of solute in liquid chromatography(LC)is first proposed.The unified model was tested and proved to be valid for a LC sys- tem with mobile phase consisting of a complete range of multiple,ternary or binary components and each kind of LC except size exclusion chromatography.In addition,so long as making some assumptions and mathematical conversions,the expressions of various popular models in LC can be derived by using the unified model.
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
基金Major funding for this research was provided by the Ministry of Higher Education Malaysia and partially funded by the Land Surveyors Board of Malaysia.
文摘Understanding the behavior of urban air pollution is important en route for sustainable urban development (SUD). Malaysia is on its mission to be a developed country by year 2020 comprehends dealing with air pollution is one of the indicators headed towards it. At present monitoring and managing air pollution in urban areas encompasses sophisticated air quality modeling and data acquisition. However, rapid developments in major cities cause difficulties in acquiring the city geometries. The existing method in acquiring city geometries data via ground or space measurement inspection such as field survey, photogrammetry, laser scanning, remote sensing or using architectural plans appears not to be practical because of its cost and efforts. Moreover, air monitoring stations deployed are intended for regional to global scale model whereby it is not accurate for urban areas with typical resolution of less than 2 km. Furthermore in urban areas, the pollutant dispersion movements are trapped between buildings initiating it to move vertically causing visualization complications which imply the limitations of existing visualization scheme that is based on two-dimensional (2D) framework. Therefore this paper aims is to perform groundwork assessment and discuss on the current scenario in Malaysia in the aspect of current policies towards SUD, air quality monitoring stations, scale model and detail discussion on air pollution dispersion model used called the Operational Street Pollution Model (OSPM). This research proposed the implementation of three-dimensional (3D) spatial city model as a new physical data input for OSPM. The five Level of Details (LOD) of 3D spatial city model shows the scale applicability for the dispersion model implementtation. Subsequently 3D spatial city model data commonly available on the web, by having a unified data model shows the advantages in easy data acquisition, 3D visualization of air pollution dispersion and improves visual analysis of air quality monitoring in urban areas.
基金This work was supported by the Joint Fund of the National Natural Science Foundation of China the Shanghai Baoshan Steel Complex under Grant No. 50274039.
文摘The molecular interaction volume model (MIVM) for a general ternary system was deduced in detail for further clarifying and understanding its general multicomponent expression. Both MIVM and the unified interaction parameter formalism (UIPF) can be used to predict the activities of solutes and solvents in the Fe-Cr-Ni liquid alloys. But the former employs only the infinite dilute activity coefficients, and the later is not applicable without the dilute binary and ternary interaction parameters. MIVM has a certain physical meaning from the viewpoint of statistical thermodynamics, so it is an alternative for the estimation of activity coefficients of the solutes and solvents in a dilute or finite concentration metal solution where the interaction parameters are absent or their accuracies are questionable.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Development Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Traditional model for calculating performance parameters of a fix-pad journal bearing leads to heavy workload, complicated and changeable formulae as it requires deriving various geometric formulae with different bearing types such as circular journal bearing, dislocated bearing and elliptic bearing. Considering different pad preload ratios for non-standard bearing, traditional model not only becomes more complicated but also reduces scalability and promotion of the calculation programs. For the complexly case of traditional model while dealing with various fix-pad journal bearings, unified coordinate system model for performance calculation of fix-pad journal bearing is presented in the paper. A unified coordinate system with the bearing center at the origin is established, and the eccentricity ratio and attitude angle of axis relative to each pad are calculated through the coordinates of journal center and each pad center. Geometric description of fix-pad journal bearing is unified in this model, which can be used for both various standard bearing and non-standard bearing with different pad preload ratios. Validity of this model is verified with an elliptical bearing. Performance of a non-standard four-leaf bearing with different pad preload ratios is calculated based on this model. The calculation result shows that increasing preload ratio of the pad 1 and keeping that of the left three pads constant improves bearing capacity, stiffness and damping coefficients. This research presents a unified coordinate system model unifies performance calculation of fix-pad journal bearings and studied a non-standard four-leaf bearing with different pad preload ratios, the research conclusions provides new methods for performance calculation of fix-pad journal bearings.
文摘A new unified computational method is proposed for modeling the relationship between the parameters of the high-speed particle-impact texturing process and the final surface morphology of the casting roller. The whole surface-texturing process is divided into three parts. The first part is the acceleration process of particles inside and outside the nozzle,which can be analyzed using the computational fluid dynamics method to obtain the particle impact velocities. The second part is a simulation of the bombardment process of particles onto the roller surface using the LS-DYNA software as the analysis tool and the results obtained in the first part as input parameters. The last part is the continuously random impact process of particles on the casting roller surface to form a functional surface,which is characterized by a simplified roughness model. Finally,the above three parts are combined to establish a unified computational model,the performance of which is successfully verified in a series of experiments.
文摘We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions containing gravity has been established, and its results are consistent with experiments.
基金Sponsored by Postdoctoral Fund of Heilongjiang Province (Grant NoLRB05 -002)
文摘Polarized magnetic system has a series of features, such as small volume, light weight, low power consumption, high sensitivity, quick movement and so on, widely used in the products of the military aerospace electromagnetic relay. The typical polarized magnetic system has mainly four structures and its simplified equivalent magnetic circuits model is the base of the design of the electromagnetic relay with permanent magnet. In the past, the analysis method that people used was difficult to build the unified mathematical models, which divided the work gap magnetic flux into "permanent magnet flux" and "electromagnetic flux". Based on the analysis method of the work gap magnetic voltage, this paper founds the unified mathematical model of the polarized magnetic system and divides the attractive torque into permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula. It analyses the influence of permanent magnet sizes on permanent magnet torque, polarized torque and electromagnetic torque through the energy balance formula and the conclusions can direct the design of aerospace electromagnetic relay with permanent magnet.
文摘In the unified subquark model of all fundamental particles and forces, the mass of the Higgs boson in the standard model of electroweak interactions (mH) is predicted to be about (where mw is the mass of the charged weak boson), which agrees well with the experimental values of 125 - 126 GeV recently found by the ATLAS and CMS Collaborations at the LHC. It seems to indicate that the Higgs boson is a composite of the iso-doublet subquark-antisubquark pairs well described by the unified subquark model with either one of subquark masses vanishing or being very small compared to the other.
文摘We have compiled a sample of two subsets of AGN selected from their optical and X ray data. The first subset was selected for very broad and/or peculiar optical emission line profiles, the second for a high X ray flux. Here we will discuss properties of these galaxies and show that both subsets are very similar in the multi wavelength view. Furthermore, we will discuss differences between the two subsets and their implications for a Unified Model of AGN.